Project description:The goal of this study was to evaluate the mechanisms distinguishing the different forms of myeloid suppressors in cancer and inflammation, and their indivdual roles in T cell suppression We used microarrays to profile the expression profile of myeloid suppressor cells in mouse and human samples. The starting point is the attached arrays which use different CD11+ or CD14+ selections to crudely separate the myeloid suppressors from other immune cells. The overall study is an initial step towards much higher resolution genetics studies to determine the functional prathways used by myeloid suppressors to inhibit T-cells.
Project description:The goal of this study was to evaluate the mechanisms distinguishing the different forms of myeloid suppressors in cancer and inflammation, and their indivdual roles in T cell suppression
Project description:In our study, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes. These effects are recapitulated by depletion of PTPN23 co-dependent genes in the endosomal sorting complex required for transport (ESCRT) pathway. Through proximity-dependent biotin labeling, we show that NAK-associated protein 1 interacts with PTPN23 to facilitate endosomal sorting of tumor necrosis factor receptor 1 (TNFR1), sensitizing cells to TNF--induced cytotoxicity. Our findings reveal PTPN23-dependent ESCRT machinery as a cell death checkpoint that regulates the spatiotemporal distribution of death receptors and TLRs to restrain multiple cell death pathways.
Project description:Cell death plasticity is crucial for modulating tissue homeostasis and immune responses, but our understanding of the molecular components that regulate cell death pathways to determine cell fate remains limited. Here, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes. These effects are recapitulated by depletion of PTPN23 co-dependent genes in the endosomal sorting complex required for transport (ESCRT) pathway. Through proximity-dependent biotin labeling, we show that NAK-associated protein 1 interacts with PTPN23 to facilitate endosomal sorting of tumor necrosis factor receptor 1 (TNFR1), sensitizing cells to TNF-alpha-induced cytotoxicity. Our findings reveal PTPN23-dependent ESCRT machinery as a cell death checkpoint that regulates the spatiotemporal distribution of death receptors and TLRs to restrain multiple cell death pathways.
Project description:DNA damage plays a major role in neural cell death by necrosis and/or apoptosis. However, our understanding of the molecular mechanisms of neural cell death remains still incomplete. To acquire a global understanding of the various mediators related to DNA damage-induced neural cell death pathways, we performed a whole genomic wide screen in neural stem cells by using a siRNA library. We identified 80 genes required for DNA damage-induced cell death. 14 genes (17.5%) are directly related to cell death and/or apoptosis. 66 genes have not been previously directly linked to DNA damage-induced cell death. Using an integrated approach with functional and bioinformatics analysis, we have uncovered a molecular network containing several partially overlapping and interconnected pathways and/or protein complexes that are required for DNA damage-induced neural cell death. The identification of the network of neural cell death mediators will greatly enhance our understanding of the molecular mechanisms of neural cell death and provide therapeutic targets for nervous system disorders.
Project description:Acute myeloid leukaemia (AML) affects children and adults of all ages. AML remains one of the major causes of death in children with cancer and for children with AML relapse is the most common cause of death. Here, by modelling AML in vivo we demonstrate that AML is discriminated by the age of the cell of origin. Young cells give rise to myeloid, lymphoid or mixed phenotype acute leukaemia, whereas adult cells give rise exclusively to AML, with a shorter latency. Unlike adult, young AML cells do not remodel the bone marrow stroma. Transcriptional analysis distinguishes young AML by the upregulation of immune pathways. Analysis of human paediatric AML samples recapitulates a paediatric immune cell interaction gene signature, highlighting two genes, RGS10 and FAM26F as prognostically significant. This work advances our understanding of paediatric AML biology, and provides murine models that offer the potential for developing paediatric specific therapeutic strategies.
Project description:Acute myeloid leukaemia (AML) affects children and adults of all ages. AML remains one of the major causes of death in children with cancer and for children with AML relapse is the most common cause of death. By modelling AML in vivo we demonstrate that AML is discriminated by the age of the cell of origin. Young cells give rise to myeloid, lymphoid or mixed phenotype acute leukaemia, whereas adult cells give rise exclusively to AML, with a shorter latency. Unlike adult, young AML cells do not remodel the bone marrow stroma. Transcriptional analysis distinguishes young AML by the upregulation of immune pathways. Analysis of human paediatric AML samples recapitulates a paediatric immune cell interaction gene signature, highlighting two genes, RGS10 and FAM26F as prognostically significant. This work advances our understanding of paediatric AML biology, and provides murine models that offer the potential for developing paediatric specific therapeutic strategies.