Project description:MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer. miRNA profiling of MCF7 cells in normal or hypoxic conditions or after DICER knockdown in MCF7 cells.
Project description:MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer. A total of 12 samples were analyzed. For each condition tested, 3 independent experiments were carried out (biological repicates).
Project description:MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer.
Project description:MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer.
Project description:Metastasis is the major cause of death in cancer patients, yet the genetic/epigenetic programs that drive metastasis are poorly understood. Here, we report a novel epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP). Through PI3K signaling, RON/MSP promotes expression of the G:T mismatch-specific thymine glycosylase MBD4. RON/MSP and MBD4-dependent aberrant DNA methylation results in misregulation of a specific set of genes. Knockdown of MBD4 reverses methylation at these specific loci, and blocks metastasis. We also show that the MBD4 glycosylase catalytic residue is required for RON/MSP-driven metastasis. Analysis of human breast cancers revealed that this epigenetic program is significantly associated with poor clinical outcome. Furthermore, inhibition of Ron kinase activity with a new pharmacological agent blocks metastasis of patient-derived breast tumor grafts in vivo. To determine the molecular mechanisms by which RON/MSP drives breast cancer metastasis, we performed microarray gene expression profiling of MCF7, MCF7-RON/MSP and MCF7-RON/MSP-shMBD4 cells.
Project description:HIF1α promotes glioblastoma cell proliferation and tumorigenesis under hypoxia conditions, leading to poor prognosis; however, none of the targeted therapies of HIF1α for glioblastoma is success nowadays. Therefore, we focused to look for the reason and wondered whether HIF2α contributed GBM growth. We did gene-chip and found that HIF2α contributed to the malignant progression of glioblastoma while blocking of HIF1α. Furthermore, our results revealed knock-out of HIF1α and HIF2α simultaneously improved the chemo-sensitization significantly. Moreover, miR-210-3p induced HIF1α expression but inhibited HIF2α, which meant the existence of regulation of cycle between HIF1α/HIF2α and miR-210-3p. Traditional studies have proved EGF as an upstream gene regulator of HIF1α in hypoxia conditions through EGFR-PI3K/AKT-mTOR signaling pathway. However, in this study, besides the signaling pathways mentioned above, we found the upstream regulators HIF1α and HIF2α also promoted EGF with the binding regions AGGCGTGG and GGGCGTGG. Briefly, in hypoxia microenvironment HIF1α/HIF2α-miR210-3p network promotes malignant progression of glioblastoma through EGFR-PI3K/AKT-mTOR signaling pathway with a positive feedback.
Project description:Background: Cancers are commonly characterised by hypoxia and also by global reductions in the levels of mature microRNAs. We have examined the hypothesis that hypoxia might mediate this reduction through repressive effects on microRNA biogenesis proteins. Methods: Breast cancer cell lines were exposed to hypoxia and manipulations of hypoxia inducible factor (HIF) and HIF hydroxylase activity. The effects of hypoxia on the mRNA and protein levels of enzymes involved in microRNA biogenesis (Dicer, Drosha, TARPB2, DCGR8, XPO5) was determined by RT PCR and immunoblotting. The effect of hypoxia on microRNAs was determined with microarray studies, RT PCR and reporter assays. Results: In breast cancer lines there was significant reduction of Dicer mRNA and protein levels in cells exposed to hypoxia. This effect was independent of HIF but dependent on the HIF hydroxylase PHD2 and was partly mediated by feedback effects via microRNAs. Furthermore, several other proteins with critical roles in microRNA biogenesis (Drosha, TARBP2 and DCGR8) also showed significant and co-ordinated repression under hypoxic conditions. Despite these substantial alterations no, or modest, changes were observed in mature microRNA production Conclusion: These observations provide further and important interfaces between oxygen availability and gene expression and a potential mechanistic explanation for the reduced levels of microRNAs observed in some cancers. They provide further support for the existence of feedback mechanisms in the regulation of the microRNA biogenesis pathway and the relative stability of microRNAs. MCF7 cells were treated with three different conditions. Treatment-1: MCF7 cells were exposed to hypoxia (0.1% O2) for 48 h and harvested for RNA extraction (n=3). Treatment-2: MCF7 cells were exposed to normoxia for 48 h and harvested for RNA extraction (n=3). Treatment-3: Dicer inhibition in MCF7 cells by transient transfection of siRNAs targeting Dicer. Cells were transfected with 20 nM siRNA duplexes (Shanghai GenePharma Co., Ltd, China), using Lipofectamine 2000 reagent (Invitrogen) following the manufacturerM-bM-^@M-^Ys protocol. A second transfection was carried out after 24 h following the same protocol. Cells were harvested 24 h after the second transfection and used for RNA extraction (n=3). RNA integrity was assessed using the Agilent 2100 Bioanalyzer. Affymetrix miRNA 3.1 Array Strip was used for RNA analysis. This array consisted probe sets unique to human mature and pre-miRNA hairpins. A detailed protocol can be found in the miRNA 3.1 Array Strips technical manual (Affymetrix). In summary, 100-300 ng of total RNA was used to synthesise double stranded cDNA using random hexamers. The cDNA was then amplified to produce antisense cRNA, which was then reverse transcribed in a second cycle of cDNA synthesis. The second cycle incorporates dUTP into the cDNA sequence, which allows it to be fragmented using uracil DNA glycosylase and apurinic/apyrimidic endonuclease I. Following biotinylation, these fragments were hybridised overnight to a Affymetrix miRNA 3.1 array. The arrays were then washed, stained using a fluorescently-labelled antibody, and scanned using a high-resolution scanner. Intensity data were analysed using PartekM-BM-. software (Partek Inc.). Data were normalised by quantile normalisation and log 2 transformed. Differential expression was determined by ANOVA and corrected for false discovery.