Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830).
Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830).
Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830).
Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830).
Project description:To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program. Keywords: time course, different temperatures
Project description:To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program. Experiment Overall Design: Arabidopsis thaliana rosettes from 4 week old plants at a time point four hours into the light-period were transfered to various "chilling" temperatures (20 [control], 17, 14, 12, 10 and 8°C] and harvested after 6 or 78 hours (both 10 hours into the light period). Experiment Overall Design: 6 continuous treatments X 2 timepoints X 2 replicates
Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830). 10 day-old wild type and CCA1-ox (described in Cell. 1998 Jun 26;93(7):1207-17) Arabidopsis seedlings were harvested at 6am (Zeitgeber time ZT0), 12pm (ZT6), 6pm (ZT12), and 12am (ZT18), with 3 replicates for each time and genotype.