Project description:Fast and slow skeletal muscles show different characteristics and phenotypes. This data obtained from microarray includes the comparison of normal fast plantaris and slow soleus muscles of adult rats. Characters of slow muscle are strongly dependent on the level of muscular activity. Denervation silences the muscular activity. Therefore, we determined the effects of denervation on gene expression in slow soleus muscle of adult rats.
Project description:We performed the first quantitative proteomics analysis of differences between striated (fast) and catch (slow) adductor muscle in Yesso scallop (Patinopecten yessoensis), with the goal to uncover muscle specific genes and proteins, as well as enzymes of metabolic pathways in fast and slow adductor muscle of scallops. The present findings highlight the functional roles of muscle contractile proteins, calcium signaling pathways, membrane and extracellular matrix proteins, and glycogen metabolism involved in the different contractile and metabolic properties between fast and slow muscles. The present findings will help better understand the molecular basis underlying muscle contraction and its physiological regulation in invertebrates.
Project description:Fast and slow skeletal muscles show different characteristics and phenotypes. This data obtained from microarray includes the comparison of normal fast plantaris and slow soleus muscles of adult rats. Characters of slow muscle are strongly dependent on the level of muscular activity. Denervation silences the muscular activity. Therefore, we determined the effects of denervation on gene expression in slow soleus muscle of adult rats. Denervation was performed by transection (~5 mm) of left sciatic nerve at the gluteal level. No treatments were made in the normal control rats. Sampling of soleus and/or plantaris was performed in both normal and experimental groups 28 days after the surgery.
Project description:Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease that progressively debilitates neuronal cells that control voluntary muscle activity. In a mouse model of ALS that expresses mutated human superoxide dismutase 1 (SOD1-G93A) skeletal muscle is one of the tissues affected early by mutant SOD1 toxicity. Fast-twitch and slow-twitch muscles are differentially affected in ALS patients and in the SOD1-G93A model, fast-twitch muscles being more vulnerable. We used miRNA microarrays to investigate miRNA alterations in fast-twitch (EDL) and slow-twitch (soleus) skeletal muscles of symptomatic SOD1-G93A animals and their age-matched wild type littermates.
Project description:Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease that progressively debilitates neuronal cells that control voluntary muscle activity. In a mouse model of ALS that expresses mutated human superoxide dismutase 1 (SOD1-G93A) skeletal muscle is one of the tissues affected early by mutant SOD1 toxicity. Fast-twitch and slow-twitch muscles are differentially affected in ALS patients and in the SOD1-G93A model, fast-twitch muscles being more vulnerable. We used miRNA microarrays to investigate miRNA alterations in fast-twitch (EDL) and slow-twitch (soleus) skeletal muscles of symptomatic SOD1-G93A animals and their age-matched wild type littermates. At age of 90 days RNA was extracted from extensor digitorum longus (EDL) and soleus (SOL) muscles of male SOD1-G93A animals and their age-matched wild type male littermates. RNA was hybridized on Affymetrix Multispecies miRNA-2_0 Array.
Project description:We used phosphoproteomic profiling of slow-twitch (soleus, SOL) and fast-twitch (biceps femoris, BF) muscle to identify differences between these muscle types.
Project description:Muscle is highly hierarchically organized, with functions shaped by genetically controlled expression of protein ensembles with different isoform profiles at the sarcomere scale. However, it remains unclear how isoform profiles shape whole-muscle performance. We compared two mouse hindlimb muscles, the slow, relatively parallel-fibered soleus and the faster, more pennate-fibered tibialis anterior (TA), across scales: from gene regulation, isoform expression and translation speed, to force-length-velocity-power for intact muscles. Expression of myosin heavy-chain (MHC) isoforms directly corresponded with contraction velocity. The fast-twitch TA with fast MHC isoforms had faster unloaded velocities (actin sliding velocity, Vactin; peak fiber velocity, Vmax) than the slow-twitch soleus. For the soleus, Vactin was biased towards Vactin for purely slow MHC I, despite this muscle's even fast and slow MHC isoform composition. Our multi-scale results clearly identified a consistent and significant dampening in fiber shortening velocities for both muscles, underscoring an indirect correlation between Vactin and fiber Vmax that may be influenced by differences in fiber architecture, along with internal loading due to both passive and active effects. These influences correlate with the increased peak force and power in the slightly more pennate TA, leading to a broader length range of near-optimal force production. Conversely, a greater force-velocity curvature in the near-parallel fibered soleus highlights the fine-tuning by molecular-scale influences including myosin heavy and light chain expression along with whole-muscle characteristics. Our results demonstrate that the individual gene, protein and whole-fiber characteristics do not directly reflect overall muscle performance but that intricate fine-tuning across scales shapes specialized muscle function.
Project description:The purpose of this study is to compare transcriptome profiles of one fast wilting and two slow wilting genotypes under low- and high- vapor pressure deficit Experiments: Five differential expression analyses were performed. 1. Differences within the Hutchesen line for slow and fast wilting; 2. Differences within the PI471938 line for slow and fast wilting; 3. Differences within the PI416937 line for slow and fast wilting; Differences between Hutchesen, PI471938 and PI416937 (regardless of pheotype); 5. Comparison between all lines and all pheotypes Methods: RNASeq data was generated using the Illumina HiSeq. Data passing quality control was processed as follows: Alignment to reference genome Gmax_109 using Tophat2 followed by the Tuxedo pipeline (cufflinks, cuffmerge, cuffdiff). Three cultivars, (wild-type Hutchesen and two parentla lines - PI471938 and PI416937; two conditions (normal and slow-wilting); two reps each for a total of 12 samples
Project description:Skeletal muscle myofibers, categorized into slow-twitch (type I) and fast-twitch (type II) fibers based on myosin heavy chain (MHC) isoforms, exhibit varying fatigue resistance and metabolic reliance. Type I myofibers are fatigue-resistant with high mitochondrial density and oxidative metabolism, while Type II myofibers fatigue quickly due to glycolytic metabolism and fewer mitochondria. Endurance training induces remodeling of myofiber and mitochondrial, increasing slow-twitch myofibers and enhancing mitochondrial oxidative capacity, improving muscle fitness. In our study, conducted using single-cell techniques, we delved deeply into the transcriptomic differences between type I and type IIb myofibers. In response to endurance training, type I myofibers exhibited heightened signals in essential adaptive responses, such as fatty acid oxidation, mitochondrial biogenesis, and protein synthesis, compared to type IIb myofibers. By analyzing untrained myofibers, we identified specific signaling pathways that explain the differences in their responses to endurance training. These findings provide nuanced insights into the molecular mechanisms governing endurance adaptations in fast and slow-twitch muscles, offering valuable guidance for tailored exercise routines and potential therapeutic interventions.