Project description:The right legs of 8 Brown-Norway male rats were denervated by a high sciatic nerve section in the hip region of the hind limb.Two months after denervation (6 months of age), extensor digitorum longus (EDL) muscles were removed from the operated legs. The EDL muscles from 8 age-matched non-operated rats served as innervated controls. Total RNA was isolated, labeled cDNA was prepared and hybridized to the Rat Atlas 1.2 Array II membranes (Clontech Laboratories, Palo Alto, CA).
Project description:The right legs of 8 Brown-Norway male rats were denervated by a high sciatic nerve section in the hip region of the hind limb.Two months after denervation (6 months of age), extensor digitorum longus (EDL) muscles were removed from the operated legs. The EDL muscles from 8 age-matched non-operated rats served as innervated controls. Total RNA was isolated, labeled cDNA was prepared and hybridized to the Rat Atlas 1.2 Array II membranes (Clontech Laboratories, Palo Alto, CA). Keywords: other
Project description:Muscle denervation causes skeletal muscle atrophy. The goal of these studies was to determine the effects of denervation on skeletal muscle mRNA levels in C57BL/6 mice. For additional details see Ebert et al, Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. JBC epub. June 12, 2012. Left sciatic nerves of C57BL/6 mice were transected. Seven days later bilateral tibialis anterior muscles were harvested. mRNA levels in denervated muscles were normalized to levels in contralateral innervated muscles.
Project description:To identify novel atrophy-related genes, which are controlled by BMP signaling, we performed gene expression profiling on innervated and 14 days denervated muscles of Smad4 knockout and control mice, focusing on genes that were differentially upregulated in denervated Smad4-/- muscles compared to controls. Among the different genes our attention was attracted by a gene that encodes for a novel f-box protein (Fbxo30) belonging to the SCF complex family of the ubiquitin ligases. Cell size is determined by the balance between protein synthesis and degradation. This equilibrium is affected by hormones, nutrients, energy levels, mechanical stress and cytokines. Mutations that inactivate Myostatin lead to important muscle growth in animals and humans. However, the signals and pathways responsible for this hypertrophy remain largely unknown. Here we find that BMP signaling, acting through Smad1/5/8, is the fundamental hypertrophic signal. Inhibition of BMP signaling causes muscle atrophy, abolishes the hypertrophic phenotype of Myostatin knockout and strongly exacerbates the effects of denervation and fasting. BMP-Smad1/5/8 negatively regulates a novel gene (Fbxo30) that encodes an ubiquitin ligase, that is required for muscle loss. Collectively, these data identify a critical role for the BMP pathway in adult muscle maintenance, growth and atrophy. Gene expression profiling on innervated and 14 days denervated muscles of Smad4 knockout and control mice. Three independent experiments were performed for each experimental condition using different animals for each experiment.
Project description:Here we report genome wide estimation of expression profiles at promoter level in Soleus and EDL muscles in rat hindlimbs under unloading conditions.
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.