Project description:Changes in the subcellular localisation of chloroplasts help optimise photosynthetic activity under different environmental conditions. In many plants, this movement is mediated by the blue-light photoreceptor phototropin. A model organism with simple phototropin signalling that allows clear observation of chloroplasts would facilitate the study of chloroplast relocation movement. Here, we examined this process in the simple thalloid liverwort Apopellia endiviifolia. Transverse sections of the thallus tissue showed uniformly developed chloroplasts and no air chambers; these characteristics enable clear observation of chloroplasts and analysis of their movements under a fluorescence stereomicroscope. At 22°C, the chloroplasts moved to the anticlinal walls of cells next to the neighbouring cells in the dark (dark-positioning response), whereas they moved towards weak light (accumulation response) and away from strong light (avoidance response). When the temperature was reduced to 5°C, the chloroplasts moved away from weak light (cold-avoidance response). Hence, both light- and temperature-dependent chloroplast relocation movements occur in A. endiviifolia. Notably, the accumulation, avoidance and cold-avoidance responses were induced under blue-light but not under red-light. These results suggest that phototropin is responsible for chloroplast relocation movement in A. endiviifolia and that the characteristics are similar to those in the model liverwort Marchantia polymorpha. RNA sequencing and Southern blot analysis identified a single copy of the PHOTOTROPIN gene in A. endiviifolia, indicating that a simple phototropin signalling pathway functions in A. endiviifolia. We conclude that A. endiviifolia has great potential as a model system for elucidating the mechanisms of chloroplast relocation movement.
| S-EPMC8597172 | biostudies-literature
Project description:Differential gene expression in male and female gametophytes of Pellia endiviifolia
Project description:Based on previous investigations where bis-bibenzyls isolated from liverworts showed various biological activities (cytotoxic, antimicrobial, and antiviral), we investigated their cytotoxic activity in several human cancer cell lines. From the methylene-chloride/methanol extract of the liverwort Pellia endiviifolia, three bis-bibenzyls of the perrottetin type were isolated, namely perrottetin E, 10'-hydroxyperrottetin E, and 10,10'-dihydroxyperrottetin E. The last two were found for the first time in this species. Their structures were resolved using 1D and 2D NMR, as well as by comparison with data in the literature. Cytotoxic activity of the isolated compounds was tested on three human leukemia cell lines, HL-60 (acute promyelocytic leukemia cells), U-937 (acute monocytic leukemia cells), and K-562 (human chronic myelogenous leukemia cells), as well as on human embryonal teratocarcinoma cell line (NT2/D1) and human glioblastoma cell lines A-172 and U-251, and compared to the previously isolated bis-bibenzyls (perrottetins) of similar structure. The isolated compounds exhibited modest activity against leukemia cells and significant activity against NT2/D1 and A-172. Overall, the most active cytotoxic compounds in this investigation were perrottetin E (1), isolated in this work from Pellia endiviifolia, and perrottetin F phenanthrene derivative (7), previously isolated from Lunularia cruciata and added for a comparison of their cytotoxic activity.
Project description:microRNAs(miRNAs) play critical regulatory roles mainly through cleaving targeted mRNAs or repressing gene translation during plant developments. Grapevine is amongst the most economically important fruit crops with whole genome available, and the study on grapevine miRNAs (Vv-miRNAs) have also been emphasized. However, the regulation mode of Vv-miRNAs on their target mRNAs during grapevine development has not been studied well, especially on a transcriptome-wide level. Here, six small RNA (sRNA) and mRNA libraries from various grapevine tissues were constructed for Illumina and Degradome sequencing. Subsequently, the spatiotemporal variation in the Vv-miRNAs’ regulation on their target genes was systematically analyzed. Totally, 242 known and 132 novel Vv-miRNAs were identified, and 193 target mRNAs including 103 for known and 90 for novel miRNAs were validated in one or more of tissues examined. The interesting finding was that over 50% of novel miRNAs were expressed exclusively in flowers or berries where they had tissue-specific cleavage roles on their target genes, especially, the breadth of their cleavage sites in flower tissues. Moreover, six novel miRNAs in berries were found to response to exogenous gibberellin (GA) and/or ethylene by real time RT-PCR (qRT-PCR) analysis, confirming their regulatory functions during berry development. Other finding was that about 93.6% of the known miRNAs possessed the high conservation in various tissues where their expression levels exhibited some dynamic variations during grapevine development. Significantly, it was found the phenomena that some Vv-miRNA families exist one key member that act as the main regulator of their target genes during grapevine development.