Project description:SPO11-promoted DNA double-strand breaks (DSBs) formation is a crucial step for meiotic recombination, and it is indispensable to detect the broken DNA ends accurately for dissecting the molecular mechanisms behind. Here, we report a novel technique, named DEtail-seq (DNA End tailing followed by sequencing), that can directly and quantitatively capture the meiotic DSB 3’ overhang hotspots at single-nucleotide resolution.
Project description:Primary prostate tumor samples sequenced with MSK-IMACT, a hybridization capture-based next-generation sequencing assay. Custom DNA probes were designed for targeted sequencing of all exons and selected introns of 468 genes.
Project description:A custom resequencing array for analysis of field isolates of plasmdium falciparum was created. Test of DNA with genotypes known at all loci genotyped by the microarray as well as test of accuracy correlation with amounts of DNA added to each array Comparison of test DNA from lab and clinical isolates between genotyped generated by next-generation sequencing and this new custom DNA microarray.
Project description:Amplicon-based targeted re-sequencing analysis was performed in the patient-derived gliobastoma cell culture samples. For this purpose, genomic DNA (gDNA) was isolated and DNA libraries were prepared using the TruSeq Custom Amplicon Low Input (Illumina, Inc.) technology. By this, a pool of 375 amplicons was generated for each single sample in order to enrich for the target genes ATRX1, EGFR, IDH1, NF1, PDGFRA, PIK3CG, PIK3R1, PTEN, RB1 and TP53. Sequencing was performed on the Illumina MiSeq® next generation sequencing system (Illumina Inc.) and its 2 x 250 bp paired-end v2 read chemistry. The resulting reads were quality controlled and mapped against the human reference genome (hg19). For all samples, sequence variations of the amplified regions of interest in comparison to the human reference sequence were identified and filtered based on reliability.
Project description:1134 primary and metastatic colorectal tumor samples sequenced with MSK-IMACT, a hybridization capture-based next-generation sequencing assay. Custom DNA probes were designed for targeted sequencing of all exons and selected introns of 341, 410, or 468 genes.