Project description:Analysis of changes in gene expression after transfection with miR-552-3p or miR-608 mimic in A549 cells Total RNA was obtained from A549 cells transfected with miR-552-3p or miR-608 or negative control mimic, and gene expression was compared using microarrays.
Project description:According to our previous discovery that miR-552-3p could regulate the gene expression both in cytoplasm and nucleus. Furthermore, we found the sequence in miR-552-3p was similar with cis-elements of NR1 subfamily, the important regulator of glycolipid metabolism, suggesting miR-552-3p may play a pivotal role in metabolism. To find the genes regulated by miR-5523-p, RNA-seq was used and the difference expression genes in HepG2 cells transfected with miR-552-3p or negative control was detected. Meanwhile, to found which genes are regulated by cytoplasmic miR-552-3p or nuclear miR-552-3p, importin8 expression was silenced by siRNA in the HepG2 cell and the effect of miR-552-3p on the genes expression was detected. The results of this study are showed the genes regulated by miR-552-3p and distinguish which genes are regulated by the cytoplasmic miR-552-3p or nuclear miR-552-3p.
Project description:To investigate the difference of miRNA expression between lung cancer cell A549 and its DDP-resistant cell strain A549/DDP, we have employed miRNA microarray expression to discover the difference expression of miRNAs of A549 cells and A549/DDP. We conducted RT-qPCR to examine the expression levels of top differential expressed miRNAs, namely, miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p, confirming low variability between two methods.
Project description:To investigate the difference of miRNA expression between lung cancer cell A549 and its DDP-resistant cell strain A549/DDP, we have employed miRNA microarray expression to discover the difference expression of miRNAs of A549 cells and A549/DDP. We conducted RT-qPCR to examine the expression levels of top differential expressed miRNAs, namely, miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p, confirming low variability between two methods. The A549/DDP was established from A549 in our laboratory, by exposing A549 to gradually increasing DDP concentrations, until the final concentration at 1μg/ml. To avoid the influence of drug to the A549/DDP cells, they were cultured in a drug-free medium for at least two weeks before gene expression analysis. miRNA expression of A549 and A549/DDP was then analzyed.
Project description:'MicroRNA (miRNA) is a type of non-coding RNA that regulates the expression of its target genes by interacting with the complementary sequence of the target mRNA molecules. Recent evidence has shown that genotoxic stress induces miRNA expression, but the target genes involved and role in cellular responses remain unclear. We examined the role of miRNA in the cellular response to X-ray irradiation by studying the expression profiles of radio-responsive miRNAs and their target genes in cultured human cell lines. We found that expression of miR-574-3p was induced in the lung cancer cell line A549 by X-ray irradiation. Overexpression of miR-574-3p caused delayed growth in A549 cells. A predicted target site was detected in the 3''-untranslated region of the enhancer of the rudimentary homolog (ERH) gene, and transfected cells showed an interaction between the luciferase reporter containing the target sequences and miR-574-3p. Overexpression of miR-574-3p suppressed ERH protein production and delayed cell growth. This delay was confirmed by knockdown of ERH expression. Our study suggests that miR-574-3p may contribute to the regulation of the cell cycle in response to X-ray irradiation via suppression of ERH protein production. mRNA expression were compared between the A549 cell overexpressing a radio-responsive miRNA and in the A549 cells suppressing the miRNA. Five miRNAs (miR-181d, miR-565, miR-574-3p, miR-629* and miR-766) were examined. Microarray experiments were performed with triplicate for each experiment.'
Project description:MicroRNAs (miRNAs) play important roles in a wide range of cellular processes. Aberrant regulation of miRNA genes contributes to human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs whose expression levels are regulated by TDP-43 using RNA-Seq coupled with siRNA-mediated knockdown approach. TDP-43 knocking down affected the expression of a number of miRNAs. Alterations in isomiR patterns and miRNA arm selection after TDP-43 knockdown suggest a role of TDP-43 in miRNA editing. We examined correlation of selected TDP-43 associated miRNAs and their candidate target genes in human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p expression. On the other hand, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Low expression of miR-500a-3p was associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Our experiments reveal that cancer-associated genes LIF and PAPPA may be targets of miR-500a-3p. Together with other studies, our work suggests that TDP-43-regulated miRNAs may play multi-facet roles in the pathogenesis of cancer. small RNA seq in SH-SY-5Y, SNB-19 and HT22 (TDP-43 siRNA VS Control siRNA)
Project description:MicroRNA (miRNA) is a type of non-coding RNA that regulates the expression of its target genes by interacting with the complementary sequence of the target mRNA molecules. Recent evidence has shown that genotoxic stress induces miRNA expression, but the target genes involved and role in cellular responses remain unclear. We examined the role of miRNA in the cellular response to X-ray irradiation by studying the expression profiles of radio-responsive miRNAs and their target genes in cultured human cell lines. We found that expression of miR-574-3p was induced in the lung cancer cell line A549 by X-ray irradiation. Overexpression of miR-574-3p caused delayed growth in A549 cells. A predicted target site was detected in the 3'-untranslated region of the enhancer of the rudimentary homolog (ERH) gene, and transfected cells showed an interaction between the luciferase reporter containing the target sequences and miR-574-3p. Overexpression of miR-574-3p suppressed ERH protein production and delayed cell growth. This delay was confirmed by knockdown of ERH expression. Our study suggests that miR-574-3p may contribute to the regulation of the cell cycle in response to X-ray irradiation via suppression of ERH protein production. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series