Project description:Transcriptional profiling of developmentally staged D. mel. Embryos for three genotypes: wild type, eve3 and ftz11 For additional information, please see Liu et al., 2009. Abstract: We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun-kinase phosphatase Puckered thereby inducing TNF/Eiger dependent apoptosis. In humans we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinoma (RCC), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions. Keywords: 2 channel transcription timecourse
Project description:Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the main events participating in the healing of a wound, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process, but allow exploring many unanswered features of the healing response; e.g., which are the signal(s) responsible for initiating tissue remodeling? How is the sealing of the epithelia achieved? Or which are the inhibitory cues that cancel the healing machinery upon completion? Answering these and other questions demands in first place the identification and functional analysis of wound-specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method to culture imaginal discs that allows live imaging and biochemical analysis and is healing-permissive. Employing this approach, we performed a comparative genome-wide profiling between those Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. This lets us identify a set of potential wound-specific genes. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in a healing assay. This non-saturated analysis defines a relevant set of new genes whose changes in expression levels are functionally significant for proper tissue repair. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound response.
Project description:Nucleus is a highly structured organelle and contains many functional compartments. While the structural basis for this complex spatial organization of compartments is unknown, a major component of this organization is likely to be the non-chromatin scaffolding called nuclear matrix (NuMat). Experimental evidence over the past decades indicates that most of the nuclear functions are at least transiently associated with the NuMat although the components of NuMat itself are poorly known. Here, we report NuMat proteome analysis from Drosophila melanogaster embryos and discuss its links with nuclear architecture and functions. In the NuMat proteome, we find structural proteins, chaperones related, DNA/RNA binding, chromatin remodeling and transcription factors. This complexity of NuMat proteome is an indicator of its structural and functional significance. Comparison of the 2D profile of NuMat proteome from different developmental stages of Drosophila embryos shows that less than half of the NuMat proteome is constant and rest of the proteins are stage specific dynamic components. This NuMat dynamics suggests a possible functional link between NuMat and the embryonic development. Finally, we also show that a subset of NuMat proteins remain associated with the mitotic chromosomes implicating their role in mitosis and possibly the epigenetic cellular memory. NuMat proteome analysis provides tools and opens up ways to understand nuclear organization and function.
Project description:Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the main events participating in the healing of a wound, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process, but allow exploring many unanswered features of the healing response; e.g., which are the signal(s) responsible for initiating tissue remodeling? How is the sealing of the epithelia achieved? Or which are the inhibitory cues that cancel the healing machinery upon completion? Answering these and other questions demands in first place the identification and functional analysis of wound-specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method to culture imaginal discs that allows live imaging and biochemical analysis and is healing-permissive. Employing this approach, we performed a comparative genome-wide profiling between those Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. This lets us identify a set of potential wound-specific genes. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in a healing assay. This non-saturated analysis defines a relevant set of new genes whose changes in expression levels are functionally significant for proper tissue repair. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound response. We developed a healing-permissive in vitro culture system for fly imaginal discs: we used one-channel microarrays for comparing healing-engaged cells (showing activation of the JNK signaling cascade) to cells not participating in healing (silent JNK activity) in wounded wing imaginal discs in culture. Employing this method, we aimed detecting the relevant genes involved in disc healing through microarray analysis. We compared cells actively involved in healing to those not involved and identified a whole set of upregulated or downregulated genes. They were annotated, clustered by expression profiles, chromosomal locations and presumptive functions. Most importantly, we functionally tested them genetically in a healing assay.
Project description:Species of the genus Drosophila have served as favorite models in speciation studies, however genetic factors of the interspecific hybrid sterility are underinvestigated to date. Here we performed the analysis of reproductive incompatibilities of hybrid females in crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis, molecular, cellular and genetic approaches we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis and functional defects of oogenesis in hybrids. A premature GSC loss was a most prominent defect of oogenesis in hybrid ovaries. Owing differential expression of genes encoding components of the piRNA pathway rhino and deadlock, functional RDCmel complex in hybrid ovaries was not assembled. At the same time the activity of RDCsim complex was maintained in hybrids, independently from the genomic origin of piRNA clusters. Despite identification of a cohort of overexpressed TEs in hybrid ovaries we found no evidences that their activity can be considered as the main cause of hybrid sterility. We revealed complex pattern of Vasa protein expression in hybrid germline, including partial AT-chX piRNA targeting of vasasim allele and significant developmental delay of vasamel expression. We came to the conclusions that complex multi-locus genetic changes between the species were responsible for hybrid sterility phenotype.