Project description:Polyadenylation of mRNA precursors is mediated by a large multisubunit protein complex. Here we show that RBBP6 (retinoblastoma-binding protein 6), identified initially as an Rb- and p53-binding protein, is a component of this complex and functions in 3' processing in vitro and in vivo. RBBP6 associates with other core factors, and this interaction is mediated by an unusual ubiquitin-like domain, DWNN (domain with no name), that is required for 3' processing activity. The DWNN is also expressed, via alternative RNA processing, as a small single-domain protein (isoform 3 [iso3]). Importantly, we show that iso3, known to be down-regulated in several cancers, competes with RBBP6 for binding to the core machinery, thereby inhibiting 3' processing. Genome-wide analyses following RBBP6 knockdown revealed decreased transcript levels, especially of mRNAs with AU-rich 3' untranslated regions (UTRs) such as c-Fos and c-Jun, and increased usage of distal poly(A) sites. Our results implicate RBBP6 and iso3 as novel regulators of 3' processing, especially of RNAs with AU-rich 3' UTRs. RBBP6 siRNA or control siRNA was transfected in MCF7 cells in duplicates and RNA was hybridized to GeneChip Exon 1.0 ST arrays (Affymetrix)
Project description:Polyadenylation of mRNA precursors is mediated by a large multisubunit protein complex. Here we show that RBBP6 (retinoblastoma-binding protein 6), identified initially as an Rb- and p53-binding protein, is a component of this complex and functions in 3' processing in vitro and in vivo. RBBP6 associates with other core factors, and this interaction is mediated by an unusual ubiquitin-like domain, DWNN (domain with no name), that is required for 3' processing activity. The DWNN is also expressed, via alternative RNA processing, as a small single-domain protein (isoform 3 [iso3]). Importantly, we show that iso3, known to be down-regulated in several cancers, competes with RBBP6 for binding to the core machinery, thereby inhibiting 3' processing. Genome-wide analyses following RBBP6 knockdown revealed decreased transcript levels, especially of mRNAs with AU-rich 3' untranslated regions (UTRs) such as c-Fos and c-Jun, and increased usage of distal poly(A) sites. Our results implicate RBBP6 and iso3 as novel regulators of 3' processing, especially of RNAs with AU-rich 3' UTRs.
Project description:Much of posttranscriptional mRNA regulation occurs through cis-acting sequences in mRNA 3´ untranslated regions (UTRs), which interact with specific proteins and ribonucleoprotein complexes that modulate translation, mRNA stability and subcellular localization. Studies in Caenorhabditis elegans have revealed indispensable roles for 3´UTR-mediated gene regulation, yet most C. elegans genes have lacked annotated 3´UTRs. Here we describe a high-throughput method to reliably identify 3´ ends of polyadenylated RNAs. This method, called poly(A)-position profiling by sequencing (3P-Seq), was used to determine the UTRs of C. elegans. Compared to standard methods also recently applied to C. elegans UTRs, 3P-Seq identified 8775 additional UTRs while excluding thousands of shorter UTR isoforms that do not appear to be authentic. Analysis of this expanded and corrected dataset indicated that the high A/U content of C. elegans 3´UTRs facilitated genome compaction, since the elements specifying cleavage and polyadenylation, which are A/U-rich, can more readily emerge in A/U rich regions. Indeed, 30% of the protein-coding genes have mRNAs with alternative, partially overlapping end regions that generate another 10,000 cleavage and polyadenylation sites that had gone largely unnoticed and represent potential evolutionary intermediates of progressive UTR shortening. Moreover, a third of the convergently transcribed genes utilize palindromic arrangements of bidirectional elements to specify UTRs with convergent overlap, which also contributes to genome compaction by eliminating regions between genes. Although nematode 3´UTRs have median length only one-sixth that of mammalian 3´UTRs, they have twice the density of conserved microRNA sites, in part because additional types of seed-complementary sites are preferentially conserved. These findings reveal the influence of cleavage and polyadenylation on the evolution of genome architecture and provide resources for studying posttranscriptional gene regulation. Nine samples (10 sequencing runs) from various mixed and specific stages of wild-type Caenorhabditis elegans and glp-4 mutant adults.
Project description:The post-transcriptional fate of messenger RNAs (mRNAs) is largely dictated by their 3' untranslated regions (3'UTRs), which are defined by cleavage and polyadenylation (CPA) of pre-mRNAs. We used poly(A)-position profiling by sequencing (3P-Seq) to map poly(A) sites at eight developmental stages and tissues in the zebrafish. Analysis of over 60 million 3P-Seq reads substantially increased and improved existing 3'UTR annotations, resulting in confidently identified 3'UTRs for more than 78.79% of the annotated protein-coding genes in zebrafish. Most zebrafish genes undergo alternative CPA with more than a thousand genes using different dominant 3'UTRs at different stages. 3'UTRs tend to be shortest in the ovaries and longest in the brain. Isoforms with some of the shortest 3'UTRs are highly expressed in the ovary yet absent in the maternally contributed RNAs of the embryo, perhaps because their 3'UTRs are too short to accommodate a uridine-rich motif required for stability of the maternal mRNA. At two hours post-fertilization, thousands of unique poly(A) sites appear at locations lacking a typical polyadenylation signal, which suggests a wave of widespread cytoplasmic polyadenylation of mRNA degradation intermediates. Our insights into the identities, formation, and evolution of zebrafish 3'UTRs provide a resource for studying gene regulation during vertebrate development. 3P-Seq was used to map the 3' ends of protein-coding genes in the zebrafish genome
Project description:Much of posttranscriptional mRNA regulation occurs through cis-acting sequences in mRNA 3´ untranslated regions (UTRs), which interact with specific proteins and ribonucleoprotein complexes that modulate translation, mRNA stability and subcellular localization. Studies in Caenorhabditis elegans have revealed indispensable roles for 3´UTR-mediated gene regulation, yet most C. elegans genes have lacked annotated 3´UTRs. Here we describe a high-throughput method to reliably identify 3´ ends of polyadenylated RNAs. This method, called poly(A)-position profiling by sequencing (3P-Seq), was used to determine the UTRs of C. elegans. Compared to standard methods also recently applied to C. elegans UTRs, 3P-Seq identified 8775 additional UTRs while excluding thousands of shorter UTR isoforms that do not appear to be authentic. Analysis of this expanded and corrected dataset indicated that the high A/U content of C. elegans 3´UTRs facilitated genome compaction, since the elements specifying cleavage and polyadenylation, which are A/U-rich, can more readily emerge in A/U rich regions. Indeed, 30% of the protein-coding genes have mRNAs with alternative, partially overlapping end regions that generate another 10,000 cleavage and polyadenylation sites that had gone largely unnoticed and represent potential evolutionary intermediates of progressive UTR shortening. Moreover, a third of the convergently transcribed genes utilize palindromic arrangements of bidirectional elements to specify UTRs with convergent overlap, which also contributes to genome compaction by eliminating regions between genes. Although nematode 3´UTRs have median length only one-sixth that of mammalian 3´UTRs, they have twice the density of conserved microRNA sites, in part because additional types of seed-complementary sites are preferentially conserved. These findings reveal the influence of cleavage and polyadenylation on the evolution of genome architecture and provide resources for studying posttranscriptional gene regulation.
Project description:Using 3ʹ region extraction and deep sequencing coupled to ribonucleoprotein immunoprecipitation (3’READS+RIP), together with reanalyzing previous STAU1 binding and RNA structure data, we delineate STAU1 interactions transcriptome-wide, including binding differences between alternative polyadenylation (APA) isoforms. Consistent with previous reports, RNA structures are dominant features for STAU1 binding to CDSs and 3ʹUTRs. Overall, relative to short 3ʹUTR counterparts, longer 3ʹUTR isoforms of genes have stronger STAU1 binding, most likely due to a higher frequency of RNA structures, including specialized IRAlus. However, a sizable fraction of genes express transcripts showing the opposite trend, attributable to AU-rich sequences in their alternative 3'UTRs, possibly recruiting antagonistic RBPs and/or destabilizing STAU1-binding RNA structures. Using STAU1-knockout cells, we show that strong STAU1 binding to mRNA 3'UTRs generally enhances polysome association. However, IRAlus have little impact on STAU1-mediated polysome association despite having strong interactions with the protein.
Project description:The 3' untranslated regions (3' UTRs) of mRNAs contain cis-acting elements for posttranscriptional regulation of gene expression. Here, we report that mouse genes tend to express mRNAs with longer 3' UTRs as embryonic development progresses. This global regulation is controlled by alternative polyadenylation and coordinates with initiation of organogenesis and aspects of embryonic development, including morphogenesis, differentiation, and proliferation. Using myogenesis of C2C12 myoblast cells as a model, we recapitulated this process in vitro and found that 3' UTR lengthening is likely caused by weakening of mRNA polyadenylation activity. Because alternative 3' UTR sequences are typically longer and have higher AU content than constitutive ones, our results suggest that lengthening of 3' UTR can significantly augment posttranscriptional control of gene expression during embryonic development, such as microRNA-mediated regulation. Two biological replicates of C2C12 growth and differentiation conditions, repesctively
Project description:The post-transcriptional fate of messenger RNAs (mRNAs) is largely dictated by their 3' untranslated regions (3'UTRs), which are defined by cleavage and polyadenylation (CPA) of pre-mRNAs. We used poly(A)-position profiling by sequencing (3P-Seq) to map poly(A) sites at eight developmental stages and tissues in the zebrafish. Analysis of over 60 million 3P-Seq reads substantially increased and improved existing 3'UTR annotations, resulting in confidently identified 3'UTRs for more than 78.79% of the annotated protein-coding genes in zebrafish. Most zebrafish genes undergo alternative CPA with more than a thousand genes using different dominant 3'UTRs at different stages. 3'UTRs tend to be shortest in the ovaries and longest in the brain. Isoforms with some of the shortest 3'UTRs are highly expressed in the ovary yet absent in the maternally contributed RNAs of the embryo, perhaps because their 3'UTRs are too short to accommodate a uridine-rich motif required for stability of the maternal mRNA. At two hours post-fertilization, thousands of unique poly(A) sites appear at locations lacking a typical polyadenylation signal, which suggests a wave of widespread cytoplasmic polyadenylation of mRNA degradation intermediates. Our insights into the identities, formation, and evolution of zebrafish 3'UTRs provide a resource for studying gene regulation during vertebrate development.
Project description:The 3' untranslated regions (3' UTRs) of mRNAs contain cis-acting elements for posttranscriptional regulation of gene expression. Here, we report that mouse genes tend to express mRNAs with longer 3' UTRs as embryonic development progresses. This global regulation is controlled by alternative polyadenylation and coordinates with initiation of organogenesis and aspects of embryonic development, including morphogenesis, differentiation, and proliferation. Using myogenesis of C2C12 myoblast cells as a model, we recapitulated this process in vitro and found that 3' UTR lengthening is likely caused by weakening of mRNA polyadenylation activity. Because alternative 3' UTR sequences are typically longer and have higher AU content than constitutive ones, our results suggest that lengthening of 3' UTR can significantly augment posttranscriptional control of gene expression during embryonic development, such as microRNA-mediated regulation.
Project description:DHX36 is a ATP-dependent, 3´-5´ RNA helicase of the DEAH family. Previous publications reported this helicase to associate with AU-rich elements and to specifically unwind G-quadruplex structures. Here, we performed PAR-CLIP in duplicates to specifically crosslink DHX36 and helicase-dead DHX36 E335A to its RNA binding targets in HEK293 cells. After sequencing and mapping to the human genome at nucleotide-resolution level we combined sequencing reads to a total of over 60000 binding clusters on more than 9000 transcripts. Distribution analyses revealed that DHX36 binds mainly to CDSs and 3´UTRS of mRNAs. Also, a G-rich binding motif for DHX36 was identified.