Project description:There is a remodelling process which occurs in affected vessels during GCA and vascular smooth muscle cells are key cells in this process. Thickening of vessel might be responsible for vessel occlusion. We isolated vascular smooth muscle cells from temporal artery biopsies of patients with suspected GCA and used expression chips in order to identify genes up- and down-regulated in VSMC from patients with proven GCA compared to VSMC from patients with possible GCA and to VSMC from patients with another diagnosis.
Project description:To identify the key coding genes underlying the biomarkers and pathways associated with giant cell arteritis (GCA), we performed in situ spatial profiling of molecules involved in the temporal arteries of GCA patients and controls
Project description:Vasculitis is characterized by the inflammation of blood vessels. In patients with giant cell arteritis (GCA) large- to medium-sized vessels are affected. Single-cell RNA sequencing was performed on GCA patients and healthy controls (HC) to study the transcriptome of peripheral blood mononuclear cells of patients and controls.
Project description:Rapid regeneration of smooth muscle after vascular injury is essential for maintaining proper artery function. The current view holds that pre-existing smooth muscle proliferate and expand in responding to vascular injury, contributing to virtually all new smooth muscle cells. Whether resident vascular stem cells for smooth muscle exist remains controversial and their putative functional role for artery repair and regeneration is elusive. Here we performed cell fate mapping and single cell RNA sequencing to identify Sca1+ vascular stem cells (VSCs) residing in the adventitial layer of artery wall.
Project description:Vascular smooth muscle cell plasticity plays a pivotal role in the pathophysiology of vascular diseases. Despite compelling evidence demonstrating the importance of transcription factor GATA6 in vascular smooth muscle, the functional role of GATA6 remains poorly understood. The aim of this study was to elucidate the role of GATA6 on cell migration and to gain insight into GATA6-sensitive genes in smooth muscle. Therefore, we performed Affymetrix microarray analysis on human coronary artery smooth muscle cells after overexpressing GATA6 by adenovirus transduction and compared it to control which are cell transduced with Ad-CMV-null.
Project description:We report a novel technique to reprogram human fibroblasts into endothelial and smooth muscle cells using partial iPSC reprogramming and chemically defined media. Using appropriate media conditions for differentiation of human pluripotent cells to CD34+ vascular progenitor cells, we show that temporary expression of pluripotent transcription factors and treatment with chemically-defined media, will induce differentiation of human fibroblasts to CD34+ vascular progenitor cells. Sorted CD34+ cells can then be directed to differentiate into vascular endothelial cells expressing a variety of smooth muscle markers. We have assessed the global DNA methylation (Illumina Infinium HD 450K DNA methylationBeadChips) and transcriptional (Illumina HT12v4 Gene Expression Bead Array) profiles of transdifferentiated endothelial cells and smooth muscle, human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC) differentiated CD34+ angioblasts, hESCs, hiPSC, primary smooth muscle and primary human umbilical vein endothelial cells using microarrays.
Project description:We report the application of small RNA sequencing for high-throughput profiling of small RNA under 75 bp in vascular smooth muscle cell. By a reading depth of 30M and single stranded sequencing, we generated the small RNA signature on differentiated and de-differentiated vascular smooth muscle cell induced by PDGF-BB and H3K4me2 editing. We found that PDGF-BB and H3K4me2 editing induced de-differentiation modulated miRNA profile significantly, which was demonstrated at least in part responsible for modulated vascular smooth muscle cell phenotype.
Project description:We report a novel technique to reprogram human fibroblasts into endothelial and smooth muscle cells using partial iPSC reprogramming and chemically defined media. Using appropriate media conditions for differentiation of human pluripotent cells to CD34+ vascular progenitor cells, we show that temporary expression of pluripotent transcription factors and treatment with chemically-defined media, will induce differentiation of human fibroblasts to CD34+ vascular progenitor cells. Sorted CD34+ cells can then be directed to differentiate into vascular endothelial cells expressing a variety of smooth muscle markers. We have assessed the global DNA methylation (Illumina Infinium HD 450K DNA methylationBeadChips) and transcriptional (Illumina HT12v3 and HT12v4 Gene Expression Bead Array) profiles of transdifferentiated endothelial cells and smooth muscle, human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC) differentiated CD34+ angioblasts, hESCs, hiPSC, primary smooth muscle and primary human umbilical vein endothelial cells using microarrays.