Project description:We characterized by RNA-seq the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles obtained in human cell lines reveals substantial conservation of transcriptional programs, and uncovers a distinct class of genes with levels of expression across cell types and species, that have been constrained early in vertebrate evolution. This core set of genes capture a substantial and constant fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but it is associated with strong and conserved epigenetic marking, as well as to a characteristic post-transcriptional regulatory program in which sub-cellular localization and alternative splicing play comparatively large roles. Comparison of human and mouse transcriptome profiles has uncovered a distinct class of genes (6600- one third of all expressed genes in both human and mouse) whose variation in expression levels have been constrained irrespective of cell types and species that they are express in. Such constraint appears to have been developed early in vertebrate evolution since it seen in multiple other species. This constraint is not associated with the conservation of the genomic sequences found in each species. Finally, this core set of genes helps in interpreting how non-human organisms like the mouse can better be used as models for human disease and why perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer.
Project description:We characterized by RNA-seq the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles obtained in human cell lines reveals substantial conservation of transcriptional programs, and uncovers a distinct class of genes with levels of expression across cell types and species, that have been constrained early in vertebrate evolution. This core set of genes capture a substantial and constant fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but it is associated with strong and conserved epigenetic marking, as well as to a characteristic post-transcriptional regulatory program in which sub-cellular localization and alternative splicing play comparatively large roles.
Project description:<p>RNA sequencing was performed on human DRGs and relative gene abundances were calculated.</p> <p>Various analyses were performed:</p> <p> <ol> <li>Human DRG gene expression profiles were contrasted with a panel of gene expression profiles of relevant tissues in human and mouse ( integrating, among other sources, datasets from ENCODE and GTex ) in order to identify.</li> <ol type="a"> <li>DRG-enriched gene expression, co-expression modules of DRG-expressed genes, and key transcriptional regulators in humans.</li> <li>Contrasting the human and mouse DRG transcriptomes to identify DRG-enriched gene expression patterns that were conserved between human and mouse, identifying putative cell types of expression of these genes, and potential known drugs that might target the corresponding gene products.</li> <li>Characterization of non-coding RNA profile of human and mouse DRGs.</li> <li>Characterization of DRG-enriched alternative splicing and alternative transcription start site usage based transcript variants in humans and mouse, and the overlap between these two species.</li> <li>Contrasting of human DRG and GTex human tibial nerve samples to identify putative axonally transported mRNAs in sensory neurons.</li> </ol> <li>Human DRG transcriptomes from donors suffering from neuropathic and/or chronic pain were contrasted with controls to identify.</li> <ol type="a"> <li>Differentially expressed genes, pathways and regulators path play a potential role in neuronal plasticity, electrophysiological activity, immune signaling and response.</li> <li>Predictive models (Random Forests) were built to jointly predict the sex and pain state of samples based on information contained solely in autosomal gene expression profile.</li> <li>Gene co-expression modules were identified and gene set enrichment analysis performed.to identify sample - pathway associations, and to broadly characterize plasticity in human DRG cell types.</li> </ol> </ol> </p>
Project description:Uncontrolled Th17 cell activity is associated with cancer and autoimmune and inflammatory diseases. To validate the potential relevance of mouse models of targeting the Th17 pathway in human diseases we used RNA sequencing to compare the expression of coding and non-coding transcripts during the priming of Th17 cell differentiation in both human and mouse. In addition to already known targets, several transcripts not previously linked to Th17 cell polarization were found in both species. Moreover, a considerable number of human-specific long non-coding RNAs were identified that responded to cytokines stimulating Th17 cell differentiation. We integrated our transcriptomics data with known disease-associated polymorphisms and show that conserved regulation pinpoints genes that are relevant to Th17 cell-mediated human diseases and that can be modelled in mouse. Substantial differences observed in non-coding transcriptomes between the two species as well as increased overlap between Th17 cell-specific gene expression and disease-associated polymorphisms underline the need of parallel analysis of human and mouse models. Comprehensive analysis of genes regulated during Th17 cell priming and their classification to conserved and non-conserved between human and mouse facilitates translational research, pointing out which candidate targets identified in human are worth studying by using in vivo mouse models. Altogether 114 (57 human and 57 mouse) samples were analyzed representing 3 biological replicates of timeseries data (0, 0.5, 1, 2, 4, 6, 12, 24, 48 and 72 hours) of Th17 polarized cells and control Th0 cells
Project description:Uncontrolled Th17 cell activity is associated with cancer and autoimmune and inflammatory diseases. To validate the potential relevance of mouse models of targeting the Th17 pathway in human diseases we used RNA sequencing to compare the expression of coding and non-coding transcripts during the priming of Th17 cell differentiation in both human and mouse. In addition to already known targets, several transcripts not previously linked to Th17 cell polarization were found in both species. Moreover, a considerable number of human-specific long non-coding RNAs were identified that responded to cytokines stimulating Th17 cell differentiation. We integrated our transcriptomics data with known disease-associated polymorphisms and show that conserved regulation pinpoints genes that are relevant to Th17 cell-mediated human diseases and that can be modelled in mouse. Substantial differences observed in non-coding transcriptomes between the two species as well as increased overlap between Th17 cell-specific gene expression and disease-associated polymorphisms underline the need of parallel analysis of human and mouse models. Comprehensive analysis of genes regulated during Th17 cell priming and their classification to conserved and non-conserved between human and mouse facilitates translational research, pointing out which candidate targets identified in human are worth studying by using in vivo mouse models.
Project description:Previous study showed that there are more cell cycle active cardiomyocytes (CMs) in 3-month-old (3M) than1-year-old (1Y) human atria, and extracellular matrix (ECM) from mouse atria benefits neonatal CMs proliferation. We investigate the global changes of transcriptomes between 3M and 1Y human atria and whether ECM from 3M human atria improves myocardium infarct recovery. RNAseq results showed that the major changes between 3M and 1Y human atria were ECM. 3M –ECM increased CM cell cycle activities and rescue mouse heart from injury. We conclude that 3M-ECM hold a therapeutic effect on myocardium infarction.