Project description:Chromatin modifying activities for construction of appropriate epigenetic landscapes by polycomb repressive complex 2 (PRC2) play an essential role in development and tumorigenesis. However, the spatiotemporal mechanisms by which PRC2 achieves diverse epigenomes for specific tissue or cellular contexts remain poorly understood. Here, we discovered that LATS2 knockout causes dysregulation of PRC2 and subsequent transcriptome changes for differentiation in both mouse and human cells. LATS2 depletion dependent dysregulation of PRC2 also effects H3K4me3 and forms negative feedback loop for maintenance of PRC2. Further analyses reveal that LATS2 on chromatin binds to EZH2 and LATS2 has ability to phosphorylate PRC2 in vitro. These LATS2 dependent H3K27me3 targets are highly induced during neurogenesis, and statistical analysis of glioblastoma multiforme reveals that LATS2-high cases show more dedifferentiated transcriptome and poor prognosis with silencing of H3K27me3 targets. These observations suggest that LATS2-mediated epigenome coordination is pivotal for development and disease, including cancer. mRNA of LATS2 KO HeLa-S3 cells rescued by empty vector, wild-type LATS2 or kinase-dead LATS2 were subjected to deep sequencing profiling using Illumina HiSeq 2500
Project description:Chromatin modifying activities for construction of appropriate epigenetic landscapes by polycomb repressive complex 2 (PRC2) play an essential role in development and tumorigenesis. However, the spatiotemporal mechanisms by which PRC2 achieves diverse epigenomes for specific tissue or cellular contexts remain poorly understood. Here, we discovered that LATS2 knockout causes dysregulation of PRC2 and subsequent transcriptome changes for differentiation in both mouse and human cells. LATS2 depletion dependent dysregulation of PRC2 also effects H3K4me3 and forms negative feedback loop for maintenance of PRC2. Further analyses reveal that LATS2 on chromatin binds to EZH2 and LATS2 has ability to phosphorylate PRC2 in vitro. These LATS2 dependent H3K27me3 targets are highly induced during neurogenesis, and statistical analysis of glioblastoma multiforme reveals that LATS2-high cases show more dedifferentiated transcriptome and poor prognosis with silencing of H3K27me3 targets. These observations suggest that LATS2-mediated epigenome coordination is pivotal for development and disease, including cancer. mRNA of wild type (WT) and LATS2 KO HeLa-S3 cells were subjected to deep sequencing profiling using Illumina HiSeq 2500
Project description:Chromatin modifying activities for construction of appropriate epigenetic landscapes by polycomb repressive complex 2 (PRC2) play an essential role in development and tumorigenesis. However, the spatiotemporal mechanisms by which PRC2 achieves diverse epigenomes for specific tissue or cellular contexts remain poorly understood. Here, we discovered that LATS2 knockout causes dysregulation of PRC2 and subsequent transcriptome changes for differentiation in both mouse and human cells. LATS2 depletion dependent dysregulation of PRC2 also effects H3K4me3 and forms negative feedback loop for maintenance of PRC2. Further analyses reveal that LATS2 on chromatin binds to EZH2 and LATS2 has ability to phosphorylate PRC2 in vitro. These LATS2 dependent H3K27me3 targets are highly induced during neurogenesis, and statistical analysis of glioblastoma multiforme reveals that LATS2-high cases show more dedifferentiated transcriptome and poor prognosis with silencing of H3K27me3 targets. These observations suggest that LATS2-mediated epigenome coordination is pivotal for development and disease, including cancer. Examination of 2 different histone modifications in parental wild-type HeLa-S3 and LATS2-knockout KO cells using Illumina HiSeq 2000.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.