Project description:Male Sprague-Dawley rats were used to establish exhausted-exercise model by motorized rodent treadmill. Yu-Ping-Feng-San at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Quantitative proteomics was performed for assessing the related mechanism of Yu-Ping-Feng-San.
Project description:While prion infections have been extensively characterized in the laboratory mouse, little is known regarding the molecular responses to prions in other rodents. To explore these responses and make comparisons, we generated a prion disease in the laboratory rat by successive passage of mouse RML prions. Here we describe the accumulation of prions and associated pathology in the rat and describe the transcriptional impact throughout prion disease. Comparative transcriptional profiling between laboratory mice and rats suggests that similar molecular processes are unfolding in response to prion infection. At the level of individual transcripts, however, variability exists between mice and rats and many genes deregulated in mouse scrapie are not affected in rats. Notwithstanding these differences, many transcriptome responses are conserved between mice and rats infected with scrapie. Our findings highlight the usefulness of comparative approaches to understanding neurodegeneration and prion diseases in particular.
Project description:While prion infections have been extensively characterized in the laboratory mouse, little is known regarding the molecular responses to prions in other rodents. To explore these responses and make comparisons, we generated a prion disease in the laboratory rat by successive passage of mouse RML prions. Here we describe the accumulation of prions and associated pathology in the rat and describe the transcriptional impact throughout prion disease. Comparative transcriptional profiling between laboratory mice and rats suggests that similar molecular processes are unfolding in response to prion infection. At the level of individual transcripts, however, variability exists between mice and rats and many genes deregulated in mouse scrapie are not affected in rats. Notwithstanding these differences, many transcriptome responses are conserved between mice and rats infected with scrapie. Our findings highlight the usefulness of comparative approaches to understanding neurodegeneration and prion diseases in particular. We Adapted RML Mouse Scrapie into Rats and measured the resulting gene expression changes in brain as a result of disease progression. Rats were infected by intracranial inoculation with prion isolates obtained by adaptation of mouse RML scrapie prions into rats. Brain samples were collected from third and fourth passage infected rats and age-matched controls at specified timepoints and gene expression profiles obtained. For each time point, 3 diseased and control brain samples were profiled.
Project description:Analysis of LBNF1 rat testes from controls, containing both somatic and all germ cell types and from irradiated rats in which all cells germ cells except type A spermatgogonia are eliminated. Results provide insight into distinguishing germ and somatic cell genes and identification of somatic cell genes that are upregulated after irradiation.
Project description:Transcriptomic responses of the liver and adipose tissues to altered carbohydrate-fat ratio in diet: An isoenergetic study in young rats
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.