Project description:Oxidative stress plays a crucial role in preeclampsia (PE) pathogenesis. Evidence indicates altered microRNAs (miRNAs) expression in PE, however, the relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in PE is not fully elucidated. In the present study, we investigate the impact of increased oxidative stress on miRNA and mRNA expression profiles of genes known to be associated with PE in villous 3A first trimester trophoblast cells. Cells were exposed to H2O2 at 10 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity was determined using the SRB assay and data was used to calculate the IC50 of H2O2. Total RNA was extracted after short-term exposure (4 h) to H2O2 for miRNA expression profiling. H2O2 exerted a concentration and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluatable miRNAs. Short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile. Oxidative stress plays a crucial role in preeclampsia (PE) pathogenesis. Evidence indicates altered microRNAs (miRNAs) expression in PE, however, the relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in PE is not fully elucidated. In the present study, we investigate the impact of increased oxidative stress on miRNA and mRNA expression profiles of genes known to be associated with PE in villous 3A first trimester trophoblast cells. Cells were exposed to H2O2 at 10 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity was determined using the SRB assay and data was used to calculate the IC50 of H2O2. Total RNA was extracted after short-term exposure (4 h) to H2O2 for miRNA expression profiling. H2O2 exerted a concentration and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluatable miRNAs. Short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile.
Project description:Oxidative stress plays a crucial role in preeclampsia (PE) pathogenesis. Evidence indicates altered microRNAs (miRNAs) expression in PE, however, the relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in PE is not fully elucidated. In the present study, we investigate the impact of increased oxidative stress on miRNA and mRNA expression profiles of genes known to be associated with PE in villous 3A first trimester trophoblast cells. Cells were exposed to H2O2 at 10 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity was determined using the SRB assay and data was used to calculate the IC50 of H2O2. Total RNA was extracted after short-term exposure (4 h) to H2O2 for miRNA expression profiling. H2O2 exerted a concentration and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluatable miRNAs. Short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile. Oxidative stress plays a crucial role in preeclampsia (PE) pathogenesis. Evidence indicates altered microRNAs (miRNAs) expression in PE, however, the relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in PE is not fully elucidated. In the present study, we investigate the impact of increased oxidative stress on miRNA and mRNA expression profiles of genes known to be associated with PE in villous 3A first trimester trophoblast cells. Cells were exposed to H2O2 at 10 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity was determined using the SRB assay and data was used to calculate the IC50 of H2O2. Total RNA was extracted after short-term exposure (4 h) to H2O2 for miRNA expression profiling. H2O2 exerted a concentration and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluatable miRNAs. Short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile. Cells were grown to 90% confluency in 75 cm2 flasks and exposed to 25 µM H2O2 in complete medium for 4 h. Total RNA was isolated using the Qiagen miRNEasy Mini Kit and quality/quantity measured in the Molecular Genomics Core at UTMB. RNA was quantitated spectrophotometrically using a NanoDrop ND-1000 (NanoDrop Techniologies, DE). Quality of the purified RNA was assessed by visualization of 18S and 28S RNA bands using an Agilent BioAnalyzer 2100 (Agilent Technologies, CA). Resulting electroperograms were used in the calculation of the 28S/18S ratio and the RNA Integrity Number. Reverse transcription was carried out using either the miScript II RT kit or RT2 First Strand and subsequent SYBR green based real-time PCR on a BioRad Chromo4 Real-Time PCR Detector per manufacturerâs recommendation. The miRNA profile screening was performed using miScript Human miRNome PCR Array (MIHS-3216Z, Qiagen, Valencia, CA). Data was analyzed using the ÎÎCT method with the miScript miRNA PCR Array Data Analysis version 3.5 (SABiosciences, Valencia CA).
Project description:Identification of factors in conditioned media of first-trimester placental villous explants. Explants were cultured under hypoxia (2% O2), 5% CO2 in serum-free DMEM/F12 and treated with recombinant galectin-7 (1ug/ml) or vehicle control (BSA) for 72h. Identification of factors in conditioned media of first-trimester placental villous explants. Explants were cultured under superoxia (20% O2), 5% CO2 in serum-free DMEM/F12 and treated with recombinant galectin-7 (1ug/ml) or vehicle control (BSA) for 72h.
Project description:Seven patient paired primary human HLA-G+ extravillous trophoblasts (EVT) and Villous trophoblasts (VT) obtained from 1st trimester (7-9 weeks) villous tissue were obtained. RNA was isolated directly after isolation and purification using FACS sort for CD45-HLA-G+ (EVT) and CD45-HLA-G-EGFR1+ (VT) fractions. Expression profiles were compared to two samples of the choriocarcinoma cell line JEG-3 and four samples of decidual stromal cells (DSC) at passage 2 after cell culture.
Project description:The goal of this study was to identify the gene expression signatures of two closely related types of trophoblast in human placentas: villous cytotrophoblasts (vCTB) and proximal column extravillous trophoblasts (pcEVT). The two populations were isolated from first trimester placentas and identified using the specific surface markers, EGFR (vCTB) and HLA-G (pcEVT).
Project description:In this study, we investigated the potential downstream target proteins in trophoblasts that were regulated by SIRT1 through modulation of acetylation. To this end, the IP products of SIRT1 in the lysate of human first-trimester villous tissue and HTR8/SVneo cells were subjected to proteomics analyses by LC-MS/MS.
Project description:Global gene expression pattern in human first trimester primary villous cytotrophoblast cells (vCTBs) in comparison with human first trimester placental villous mesenchymal cells
Project description:Invasion of cytotrophoblasts into uterine tissues is essential for placental development. To identify molecules regulating trophoblast invasion, mRNA signatures of purified villous (CTB, poor invasiveness) and extravillous (EVT, high invasiveness) trophoblasts isolated from first trimester human placentae and villous explant cultures, respectively, were compared using GeneChip analyses yielding 991 invasion/migration related transcripts. Several genes involved in physiological and pathologic cell invasion, including ADAM-12,-19,-28 as well as Spondin-2, were upregulated in EVT. Pathway prediction analyses identified several functional modules associated with either the invasive or the non-invasive trophoblast phenotype. One of the genes which were downregulated in the invasive mRNA pool, heme oxygenase-1 (HO-1), was selected for functional analyses. Real-time PCR analyses, Western blottting, and immunofluorescene of first trimester placentae and differentiating villous explant cultures demonstrated downregulation of HO-1 in invasive EVT as compared to CTB. Modulation of HO-1 expression in loss-of as well as gain-of function cell models (BeWo and HTR8/SVneo, respectively) demonstrated an inverse relationship of HO-1 expression with trophoblast migration in transwell and wound healing assays. Importantly, HO-1 expression led to an increase in protein levels and activity of the nuclear hormone receptor PPARgamma. Pharmacological inhibition of PPARgamma abrogated the inhibitory effects of HO-1 on trophoblast migration. Collectively, our results demonstrate that gene expression profiling of EVT and CTB can be used to unravel novel regulators of cell invasion. Accordingly, we identify heme oxygenase-1 as a negative regulator of trophoblast motility acting via upregulation of PPARgamma. Experiment Overall Design: To identify genes potentially regulating cell invasion trophoblast cells of early human gestation with distinct invasive properties were profiled. Experiment Overall Design: Distinct gene expression signatures of highly invasive EVT (n = 6) and poorly invasive CTB (n = 5) of different first trimester placentae using Affymetrix U133A GeneChips interrogating >20,000 genes were determined.
Project description:The first trimester is a critical window of maternal-fetal communication for pregnancy. Using single cell RNA-sequencing to dissect placenta heterogeneity, we identified five major cell types (trophoblasts, stromal cells, hofbauer cells, antigen presenting cells and endothelial cells). We identified seven unique trophoblast subclusters, including new subtypes that transition into the terminal cell types, extra-villous trophoblasts and syncytiotrophoblasts. As fetal sex impacts pregnancy, we analyzed sex differences in each cell type and identified differences in immune cell function. TGFβ1, β-estradiol, and dihydrotestosterone emerge as upstream regulators of sexually dimorphic genes in a cell type specific manner. Thus, the fetal contribution at the maternal-fetal interface is cell and sex specific.