Project description:Investigation of whole genome gene expression level changes in sporulating Bacillus subtilis 168 delta-prpE mutant, compared to the wild-type strain. The mutation engineered into this strain results in impaired germination of spores. A six chip study using total RNA extracted from three separate wild-type cultures of sporulating Bacillus subtilis 168 and three separate cultures of sporulating mutant strain, Bacillus subtilis 168 delta-prpE, in which prpE (yjbP BSU11630) gene coding for a protein phosphatase is deleted entirely. Each chip consists of four fields able to measure the expression level of 4,104 genes from Bacillus subtilis subsp. subtilis strain 168 NC_000964 with eight 60-mer probe pairs (PM/MM) per gene, with two-fold technical redundancy.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:Investigation of whole genome gene expression level changes in sporulating Bacillus subtilis 168 delta-prpE mutant, compared to the wild-type strain. The mutation engineered into this strain results in impaired germination of spores.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes. For each sample analyzed in this study three biological replicates were performed. Three different samples were taken from a strain expressing the WalR-SPA protein as well as from wild-type (168) without a tagged WalR. Samples were taken from exponentially growing cells in low phosphate medium (LPDM) as well as from phosphate-limited cells (T2). Each sample compares ChIP DNA vs. Total DNA from the same cells.