Project description:Bacillus weihenstephanensis is a subspecies of the Bacillus cereus sensu lato group of spore forming bacteria known to cause food spoilage or food poisoning. The key distinguishing phenotype of B. weihenstephanensis is its ability to grow below 7°C or, from a food safety perspective, to grow and potentially produce toxins in a refrigerated environment. In order to gain insight into to the mechanistic basis of its psychrotolerant phenotype, as well as elucidate relevant aspects of its toxigenic profile, the proteome profiles of cells grown at either 6°C or 30°C were compared.
Project description:Bacterial endospores, the transmissible forms of pathogenic bacilli and clostridia, are heterogeneous multilayered structures composed of proteins. These proteins protect the spores against variety of stresses, thus helping spore survival, and assist in germination, by interacting with the environment to form vegetative cells. Owing to the complexity, insolubility, and dynamic nature of spore proteins, it has been difficult to obtain their comprehensive protein profiles. The intact spores of Bacillus subtilis, Bacillus cereus, and Peptoclostridium difficile and their vegetative counterparts were disrupted by bead-beating in 6M urea under reductive conditions. The heterogeneous mixture was then double-digested with LysC and trypsin. Next, the peptide mixture was pre-fractionated with Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) followed by reverse phase LC-FT-MS analysis of the fractions. ‘One-pot’ method is a simple, robust method that yields identification of >1000 proteins with high confidence, across all spore layers from Bacillus subtilis, Bacillus cereus, and Peptoclostridium difficile. This method can be employed for proteome-wide analysis of non-spore-forming as well as spore-forming pathogens. Analysis of spore protein profile will help to understand the sporulation and germination processes and to distinguish immunogenic protein markers.
Project description:Spores of Bacillales and Clostridiales species contain 100s of different mRNAs, and their major function in Bacillus subtilis is to provide ribonucleotides for new RNA synthesis when spores germinate. In new work, RNA was isolated from spores of five Bacillales and one Clostridioides species and relative spore mRNA levels were determined by RNA-seq. Determination of RNA levels in single spores allowed calculation of RNA nt/spore, and assuming mRNA is 3% of spore RNA allowed calculation that only ~6% of spore mRNAs were present at ≥ 1/spore. Bacillus subtilis, Bacillus atrophaeus and Clostridioides difficile spores had 49, 42 and 51 mRNAs at >1/spore, respectively. Numbers of mRNAs at ≥1/spore were ~10 to 50% higher in Geobacillus stearothermophilus and Bacillus thuringiensis Al Hakam spores, respectively, and ~ 4-fold higher in Bacillus megaterium spores. Notably, in all species: i) many of the 60 most abundant spore mRNAs were transcribed by RNA polymerase with forespore-specific s factors; ii) some to many of the most abundant spore mRNAs encoded orthologs of those encoded by abundant B. subtilis spore mRNAs and proteins present in dormant spores ; and iii) some spore mRNAs were likely transcribed in the mother cell compartment of the sporulating cell. Indeed , analysis of the coverage of RNA-seq reads on mRNAs from all six species suggested that abundant spore mRNAs were at least somewhat fragmented. This observation was confirmed by RT-qPCR analysis of three abundant mRNAs each from B. subtilis and C. difficile spores. These data add to a growing body of evidence indicating that the great majority of mRNAs in spores of Firmicutes are degradation and function as a ribonucleotide depot for new RNA synthesis when spores germinate.