Project description:Deletion of AMPK significantly extended the onset of leukemogenesis and depleted leukemia initiating cells (LICs). To identify how AMPK regulates LICs, we performed gene expression profiling of LICs isolated from AMPK wild type leukemic mice or AMPK-deficient leukemic mice. 4 groups were analyzed; 1) Whole leukemia (GFP+) from AMPK WT ( AMPKfl/fl) mice, 2) Whole leukemia (GFP+) from AMPK-deficient ( AMPK?/?l) mice, 3) LICs=L-GMP (GFP+,lin-,c-kit+, CD16/32+,CD34+) cells from AMPK WT ( AMPKfl/fl) mice, 4) LICs=L-GMP (GFP+,lin-,c-kit+, CD16/32+,CD34+) cells from AMPK-deficient ( AMPK?/?l) mice.
Project description:How cancer cells adapt to metabolically adverse conditions in patients and strive to proliferate is a fundamental question in cancer biology. Here we show that AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase, confers metabolic stress resistance to leukemia-initiating cells (LICs) and promotes leukemogenesis. Upon dietary restriction, MLL-AF9-induced murine acute myeloid leukemia (AML) activated AMPK and maintained leukemogenic potential. AMPK deletion significantly delayed leukemogenesis and depleted LICs by reducing the expression of glucose transporter 1 (Glut1), compromising glucose flux, and increasing oxidative stress and DNA damage. LICs were particularly dependent on AMPK to suppress oxidative stress in the hypoglycemic bone marrow environment. Strikingly, AMPK inhibition synergized with physiological metabolic stress caused by dietary restriction and profoundly suppressed leukemogenesis. Our results indicate that AMPK protects LICs from metabolic stress and that combining AMPK inhibition with physiological metabolic stress potently suppresses AML by inducing oxidative stress and DNA damage.
Project description:How cancer cells adapt to metabolically adverse conditions in patients and strive to proliferate is a fundamental question in cancer biology. Here we show that AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase, confers metabolic stress resistance to leukemia-initiating cells (LICs) and promotes leukemogenesis. Upon dietary restriction, MLL-AF9-induced murine acute myeloid leukemia (AML) activated AMPK and maintained leukemogenic potential. AMPK deletion significantly delayed leukemogenesis and depleted LICs by reducing the expression of glucose transporter 1 (Glut1), compromising glucose flux, and increasing oxidative stress and DNA damage. LICs were particularly dependent on AMPK to suppress oxidative stress in the hypoglycemic bone marrow environment. Strikingly, AMPK inhibition synergized with physiological metabolic stress caused by dietary restriction and profoundly suppressed leukemogenesis. Our results indicate that AMPK protects LICs from metabolic stress and that combining AMPK inhibition with physiological metabolic stress potently suppresses AML by inducing oxidative stress and DNA damage.
Project description:How cancer cells adapt to metabolically adverse conditions in patients and strive to proliferate is a fundamental question in cancer biology. Here we show that AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase, confers metabolic stress resistance to leukemia-initiating cells (LICs) and promotes leukemogenesis. Upon dietary restriction, MLL-AF9-induced murine acute myeloid leukemia (AML) activated AMPK and maintained leukemogenic potential. AMPK deletion significantly delayed leukemogenesis and depleted LICs by reducing the expression of glucose transporter 1 (Glut1), compromising glucose flux, and increasing oxidative stress and DNA damage. LICs were particularly dependent on AMPK to suppress oxidative stress in the hypoglycemic bone marrow environment. Strikingly, AMPK inhibition synergized with physiological metabolic stress caused by dietary restriction and profoundly suppressed leukemogenesis. Our results indicate that AMPK protects LICs from metabolic stress and that combining AMPK inhibition with physiological metabolic stress potently suppresses AML by inducing oxidative stress and DNA damage. Research is published: http://www.sciencedirect.com/science/article/pii/S1934590915003744
Project description:To determine role of Notch signaling in AML leukemia initiating cells we used a conditional mouse knock-in model of Notch1-IC to induce Notch1-IC expression in MLL-AF9 transformed LGMP. WT and Notch1-IC+ LGMP were analyzed to determined genes controlled by Notch signaling. 12 weeks old wt lethaly irradiated mice were transplanted with 50000 cKit+ MLL-AF9-IRES-YFP infected cells from MLL-AF9 EF1 wt/wt ROSAwt/CreERT2 or MLL-AF9 EF1 wt/lsl-N1-IC ROSAwt/CreERT2 mice + 250000 support wt total bone marrow cells. 4 weeks after transplant mice were injected 2 times with tamoxifen (0.2mg/g body weight) every other day. Mice were sacrificed and analyzed 6 days after last injection. LGMP were flow purified for RNA extraction and hybridization on Affymetrix microarrays.
Project description:This SuperSeries is composed of the following subset Series: GSE36346: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (ChIP-Seq data) GSE36347: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (expression data) Refer to individual Series
Project description:HOXA9 and MEIS1 are essential downstream effectors of the MLL-AF9 oncoprotein during leukemia induction. Leukemia derived from MLL-AF9-transduced LSK cells has a more aggressive phenotype than that derived from HOXA9/MEIS1-transduced LSK cells. To determine differential miRNA expression that contributes to increased aggressiveness in MLL-AF9-induced leukemia, miRCURY LNA microRNA Array was performed on LSK cells transduced with MLL-AF9 versus HOXA/MEIS1 oncogenes.
Project description:Deletion of AMPK significantly extended the onset of leukemogenesis and depleted leukemia initiating cells (LICs). To identify how AMPK regulates LICs, we performed gene expression profiling of LICs isolated from AMPK wild type leukemic mice or AMPK-deficient leukemic mice.
Project description:This SuperSeries is composed of the following subset Series: GSE30745: Expression data from murine acute myeloid leukemia (AML) cells following shRNA-mediated suppression of Myb GSE30746: Expression data from murine Tet-off MLL-AF9/Ras acute myeloid leukemia cell lines following withdrawal of MLL-AF9 Refer to individual Series
Project description:Analysis of gene expression profile of MLL-AF9 leukemia cells 6 days after loss of Jmjd1c. Loss of Jmjd1c induces differentiation and apoptosis in MLL-AF9 leukemia cells. These results provide insight into the role of Jmjd1c in MLL leukemia.