Project description:Deletion of AMPK significantly extended the onset of leukemogenesis and depleted leukemia initiating cells (LICs). To identify how AMPK regulates LICs, we performed gene expression profiling of LICs isolated from AMPK wild type leukemic mice or AMPK-deficient leukemic mice. 4 groups were analyzed; 1) Whole leukemia (GFP+) from AMPK WT ( AMPKfl/fl) mice, 2) Whole leukemia (GFP+) from AMPK-deficient ( AMPK?/?l) mice, 3) LICs=L-GMP (GFP+,lin-,c-kit+, CD16/32+,CD34+) cells from AMPK WT ( AMPKfl/fl) mice, 4) LICs=L-GMP (GFP+,lin-,c-kit+, CD16/32+,CD34+) cells from AMPK-deficient ( AMPK?/?l) mice.
Project description:To determine role of Notch signaling in AML leukemia initiating cells we used a conditional mouse knock-in model of Notch1-IC to induce Notch1-IC expression in MLL-AF9 transformed LGMP. WT and Notch1-IC+ LGMP were analyzed to determined genes controlled by Notch signaling. 12 weeks old wt lethaly irradiated mice were transplanted with 50000 cKit+ MLL-AF9-IRES-YFP infected cells from MLL-AF9 EF1 wt/wt ROSAwt/CreERT2 or MLL-AF9 EF1 wt/lsl-N1-IC ROSAwt/CreERT2 mice + 250000 support wt total bone marrow cells. 4 weeks after transplant mice were injected 2 times with tamoxifen (0.2mg/g body weight) every other day. Mice were sacrificed and analyzed 6 days after last injection. LGMP were flow purified for RNA extraction and hybridization on Affymetrix microarrays.
Project description:This SuperSeries is composed of the following subset Series: GSE36346: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (ChIP-Seq data) GSE36347: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (expression data) Refer to individual Series
Project description:HOXA9 and MEIS1 are essential downstream effectors of the MLL-AF9 oncoprotein during leukemia induction. Leukemia derived from MLL-AF9-transduced LSK cells has a more aggressive phenotype than that derived from HOXA9/MEIS1-transduced LSK cells. To determine differential miRNA expression that contributes to increased aggressiveness in MLL-AF9-induced leukemia, miRCURY LNA microRNA Array was performed on LSK cells transduced with MLL-AF9 versus HOXA/MEIS1 oncogenes.
Project description:Analysis of gene expression profile of MLL-AF9 leukemia cells 6 days after loss of Jmjd1c. Loss of Jmjd1c induces differentiation and apoptosis in MLL-AF9 leukemia cells. These results provide insight into the role of Jmjd1c in MLL leukemia.
Project description:Deletion of AMPK significantly extended the onset of leukemogenesis and depleted leukemia initiating cells (LICs). To identify how AMPK regulates LICs, we performed gene expression profiling of LICs isolated from AMPK wild type leukemic mice or AMPK-deficient leukemic mice.
Project description:This SuperSeries is composed of the following subset Series: GSE30745: Expression data from murine acute myeloid leukemia (AML) cells following shRNA-mediated suppression of Myb GSE30746: Expression data from murine Tet-off MLL-AF9/Ras acute myeloid leukemia cell lines following withdrawal of MLL-AF9 Refer to individual Series
Project description:We investigated the role of the transcriptional regulator Id2 in the context of MLL-rearranged acute myeloid leukemia (AML). Using an AML mouse model driven by tet-regulated MLL-AF9 co-expressed with oncogenic NRASG12D (Tet-off MLL-AF9), we demonstrated that MLL-AF9 regulates the E protein pathway by suppressing Id2, while activating the expression of its target E2-2. Moreover, we found that Id2 over-expression in Tet-Off MLL-AF9 AML cells in vitro partially phenocopies MLL-AF9 depletion and results inhibition of leukemia growth, loss of leukemia stem cell-associated gene expression pattern and induction of differentiation. To compare gene expression changes associated with enforced Id2 expression and MLL-AF9 withdrawal, RNA sequencing analysis was performed on Tet-off MLL-AF9 cells transduced with an Id2 over-expressing or a control vector, or upon MLL-AF9 dox-inducible knock-down.
Project description:P2X7 was significantly up-regulated in leukemia patients, especially in AML (MLL-AF9) and often related to poor prognosis.We compared the transcriptomic changes in MLL-AF9 induced mouse AML and overexpressed wP2X7 in MLL-AF9 induced AML. Engaged to explore the mechanism of P2X7 in leukemia progression. Mouse AML was induced by expressing MLL-AF9 in mouse HSPCs. Leukemia cells were divided into two groups, c-kit+ and c-kit-. Due to leukemia cells were nearly 95% c-kit+ in P2X7-overexpressed AML cells, we set up four groups of leukemia cells, namely leukemia total cells (V total), leukemia c-kit positive cells (V c-kit+), leukemia c-kit negative cells (V c-kit-), overexpressed wide type P2X7 leukemia cells (wP2X7).
Project description:The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in MLL-AF9 AML. We evaluated the dependance on beta-catenin for KrasG12DMLL-AF9 leukemia. Lin-Kit+ bone marrow cells obtained from mice transplanted with primary MLL-AF9 leukemia cells and KRasG12DMLL-AF9 leukemia cells were assessed for gene expression in the presence or absence of beta-catenin