Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR. RNA was extracted from 3 pairs of HCC and normal liver tissue harvested from patients to undergo microarray study.
Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR. RNA was extracted from 3 pairs of HCC and normal liver tissue harvested from patients to undergo microarray study.
Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR.
Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR.
Project description:We report the application of miRNAs analysis in exosomes based on second-generation high-throughput sequencing. Plasma samples from 3 hepatocellular carcinoma patients and 3 healthy controls were collected, and exosomes were isolated by ultra-centrifugation. MiRNAs in exosomes were then extracted and high-throughput sequencing was performed.By comparing the sequencing data, we screened out differentially expressed miRNAs and validated them with qRT-PCR in exosome samples, establishing and verifying the diagnostic panel of hepatocellular carcinoma composed of miR-212-5p, miR-519b-3p, miR-1248 and miR-1250-5p.
Project description:From a previous microarray study we developed a small chondrogenesis model. We performed qPCR and measured how knockdown of miR-199a-5p or miR-199b-5p could modulate chondrogenesis. Several experiments were used to determine the parameters of this model. We utilised parameter scan and manual sliding to refine the model. Within are two models - an initial model which only comprises of genes which we have data for, and an enhanced model which expands of the initial model to make more predictions - e.g. how miR-140-5p is indirectly regulated by miR-199a-5p and miR-199b-5p.
Project description:LncRNA profiling of hepatocellular carcinoma vs. matched noncancerous liver tissue, aimed to analyze the lncRNA expression profile of hepatocellular carcinoma (HCC) and identify prognosis-related lncRNAs.