Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR. RNA was extracted from 3 pairs of HCC and normal liver tissue harvested from patients to undergo microarray study.
Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR. RNA was extracted from 3 pairs of HCC and normal liver tissue harvested from patients to undergo microarray study.
Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR.
Project description:To identify the novel tumor suppressors in hepatocellular carcinoma (HCC), we have employed whole genome microarray expression profiling as a discovery platform in HCC and paired normal liver tissues to identify genes which down-regulated in HCC. Among which, INTS6 and its pseudogene, namely INTS6P1, were found to be dramatically down-regulated in HCC. The down-regulated expression of INTS6 and INTS6P1 in HCC was further confirmed by real-time PCR.
Project description:From a previous microarray study we developed a small chondrogenesis model. We performed qPCR and measured how knockdown of miR-199a-5p or miR-199b-5p could modulate chondrogenesis. Several experiments were used to determine the parameters of this model. We utilised parameter scan and manual sliding to refine the model. Within are two models - an initial model which only comprises of genes which we have data for, and an enhanced model which expands of the initial model to make more predictions - e.g. how miR-140-5p is indirectly regulated by miR-199a-5p and miR-199b-5p.
Project description:LncRNA profiling of hepatocellular carcinoma vs. matched noncancerous liver tissue, aimed to analyze the lncRNA expression profile of hepatocellular carcinoma (HCC) and identify prognosis-related lncRNAs.
Project description:In order to identify the targets of miR-193a-5p in osteosarcoma U2OS cell line, we used a lentivirus-mediated expression system to overexpressing miR-193a precusor, miR-193a-5p target sequence and non-target sequence, respectively, in osteosarcoma cell line U2OS. A tandem mass tag (TMT)-based quantitative proteomic strategy was employed to identify the global profile of miR-193a-5p-regulated proteins. order to identify the targets of miR-193a-5p, we used a lentivirus-mediated expression system to overexpressing miR-193a precusor, miR-193a-5p target sequence and non-target sequence, respectively, in osteosarcoma cell line U2OS. A tandem mass tag (TMT)-based quantitative proteomic strategy was employed to identify the global profile of miR-193a-5p-regulated proteins.