Project description:Little progress has been made in studying the toxicity of realistic 'non-pristine' forms of nanoparticles that presents in real soil environment. It is presently unkown whether the transformed nanoparticles in realistic environment exerts an adverse effect to rhizobium-legume symbiosis on molecular level. We used microarray to investigate the toxicogenomic responses of the model legume Medicago truncatula following 30 days exposure to three different types of biosolids (control biosolids (control BS), a mixture of Ag, ZnO and TiO2 manufactured nanomaterials added biosolids (Nano BS) and a corresponding bulk metals added biosolids (Bulk BS) ) amended soil that were aged for 6 months prior to exposure in pot experiment. Our Genechip® Medicago Genome Array is designed specially to monitor gene expression in Medicago truncatula, Medicago sativa, and the symbiotic organism Sinorhizobium meliloti. For our study, RNA were extracted from shoots and roots of Medicago truncatula that exposure to control, Bulk and Nano BS treatments for 30 days, and used for all hybridization on Affymetrix microarray. The objective of our study is to investigate the molecular mechanisms of toxicity of Nano BS in comparison with their counterpart Bulk BS treatment, using a commercial Medicago truncatula microarrays.
Project description:Little progress has been made in studying the toxicity of realistic 'non-pristine' forms of nanoparticles that presents in real soil environment. It is presently unkown whether the transformed nanoparticles in realistic environment exerts an adverse effect to rhizobium-legume symbiosis on molecular level. We used microarray to investigate the toxicogenomic responses of the model legume Medicago truncatula following 30 days exposure to three different types of biosolids (control biosolids (control BS), a mixture of Ag, ZnO and TiO2 manufactured nanomaterials added biosolids (Nano BS) and a corresponding bulk metals added biosolids (Bulk BS) ) amended soil that were aged for 6 months prior to exposure in pot experiment.
Project description:Using a dedicated split-root approach, we identified miRNAs regulated systemically by nitrogen availability in both shoots and roots of the Medicago truncatula model legume, depending on the CRA2 pathway, highlighting the phosphate-related miR399.
Project description:To investigate the gene expression levels of Medicago truncatula roots after beneficial fungi Gongronella sp. w5 inoculated.Gongronella sp. w5 promoted M. truncatula growth and caused the accumulation of sucrose in M. truncatula root tissue at 16 day-post-inoculation (dpi) without invading into the root cells. The transport of photosynthetic product sucrose to the rhizosphere by M. truncatula root cells was accelerated by upregulating the SWEET gene.
Project description:we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively.
Project description:ABI3 is a B3-domain transcription factor that acts as a master regulator of seed maturation. To identify genes that are regulated by this transcription factor in the model legume Medicago truncatula, Medicago hairy roots were generated using Agrobacterium rhizogenes transformed with the genomic sequence of the ABI3 gene of Medicago. Using the Medicago NimbleGen chip, a transciptomic analysis was performed to identify differentially expressed genes compared to the GUS expressed control.
Project description:time-course salt stress experiment of model legume Medicago truncatula roots using Affymetrix Medicago Array, aimed to dig some useful gene for improve salt resistance for legumes and other crops
Project description:For transcript analysis of early nodulation events in Medicago truncatula we compared transcripts from inoculated and uninoculated roots corresponding to defined stages between 1 and 72 h post inoculation (hpi). Keywords: time course
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at variable light and temperature conditions under greenhouse environment (period March-June). Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.