Project description:Gene expression profiles were established for Inflammatory breast cancer samples from patients treated at the Institut Paoli-Calmettes.
Project description:MicroRNAs (miRNAs), which are stably present in serum, have been reported to be potentially useful for detecting cancer. In the present study, we examined the expression profiles of serum miRNAs in large cohorts to identify the miRNAs that can be used to detect breast cancer in the early stage. We comprehensively evaluated serum miRNA expression profiles using highly sensitive microarray analysis. A total of 1,280 serum samples of breast cancer patients stored in the National Cancer Center Biobank were used. Additionally, 2,836 serum samples were obtained from non-cancer controls and 514 from patients with other types of cancers or benign diseases. The samples were divided to a training cohort including non-cancer controls, other cancers and breast cancer and a test cohort including non-cancer controls and breast cancer. The training cohort was used to identify a combination of miRNAs that detect breast cancer, and the test cohort was used to validate that combination. miRNA expression was compared between breast cancer and non-breast cancer serum , and a combination of five miRNAs (miR-1246, miR-1307-3p, miR-4634, miR-6861-5p, and miR-6875-5p) was found to detect breast cancer. This combination had a sensitivity of 97.3%, specificity of 82.9%, and accuracy of 89.7% for breast cancer in the test cohort Additionally, the combination could detect breast cancer in the early stage (sensitivity of 98.0% for T0).
Project description:Genome wide DNA methylation profiling of primary breast cancer tumors and their axillary metastasis and/or ipsilateral breast recurrence and/or contralateral breast recurrence. The Illumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 27,000 CpGs. Samples included 20 primary breast tumors and their matched axillary metastasis, 17 primary breast tumors and their matched ipsilateral breast recurrence, and 11 primary breast tumors and their matched contralateral breast recurrence. Bisulphite converted DNA from the 96 samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip v1.2 contributed by Institut Curie - Fabien Reyal
Project description:MicroRNAs (miRNAs), which are stably present in serum, have been reported to be potentially useful for detecting cancer. In the present study, we examined the expression profiles of serum miRNAs in large cohorts to identify the miRNAs that can be used to detect breast cancer in the early stage. We comprehensively evaluated serum miRNA expression profiles using highly sensitive microarray analysis. A total of 1,280 serum samples of breast cancer patients stored in the National Cancer Center Biobank were used. Additionally, 2,836 serum samples were obtained from non-cancer controls and 514 from patients with other types of cancers or benign diseases. The samples were divided to a training cohort including non-cancer controls, other cancers and breast cancer and a test cohort including non-cancer controls and breast cancer. The training cohort was used to identify a combination of miRNAs that detect breast cancer, and the test cohort was used to validate that combination. miRNA expression was compared between breast cancer and non-breast cancer serum , and a combination of five miRNAs (miR-1246, miR-1307-3p, miR-4634, miR-6861-5p, and miR-6875-5p) was found to detect breast cancer. This combination had a sensitivity of 97.3%, specificity of 82.9%, and accuracy of 89.7% for breast cancer in the test cohort Additionally, the combination could detect breast cancer in the early stage (sensitivity of 98.0% for T0). 1280 breast cancer serums (74 in training cohort, 1206 in test cohort), 54 benign breast diseases serums in test cohort, 2836 non-cancer control serums (1493 in training cohort, 1343 in test cohort), 514 non-breast benign diseases serums in training cohort. 150 of the non-cancer control serums in training cohort and 412 of the non-breast benign diseases serums in training cohort have been uploaded previously and are avaialable under GSE59856 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59856).
Project description:Gene expression profiling of breast cancer primary tumor was performed to identify gene expression that is related to the presence of sufficient tumor cells. These gene profile can be used for identification of tumor samples that are eligible for microarray diagnostics. A cohort of 403 early-stage primary breast cancer tumors was analyzed against a breast cancer reference pool
Project description:SNP Expression profiling of human breast cancer: 29 tumor samples, 4 pure normal breat samples and 8 lymphocytes samples Keywords: Human Cancer
Project description:Purpose Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with no targeted treatment available. Our previous study identified 38 TNBC-specific genes with altered expression in tumour samples compared to normal samples. This study aimed to identify whether DNA methylation contributed to these gene expression changes in the same breast cancer cohort. Additionally, we aimed to identify a whole genome methylation profile that contributes to the progression from primary breast tumour to lymph node metastasis. Methods We used the DNA of 23 primary TNBC samples, 12 matched lymph node metastases, and 11 matched normal adjacent tissues to perform 450K Illumina methylation arrays. The results were validated in an independent cohort of 70 primary TNBC samples. Results The gene expression of 16/38 TNBC-specific genes was associated with significantly altered methylation. Furthermore, altered methylation of 18 genes associated with lymph node metastasis was identified and validated in an independent cohort. Additionally, novel methylation changes between primary tumours and lymph node metastases, as well as those associated with survival were identified. Conclusion This study has shown that DNA methylation plays an important role in altered gene expression patterns of TNBC-specific genes and is the first study to perform whole genome DNA methylation analysis that includes matched lymph node metastases in this breast cancer subtype. This novel insight into the progression of TNBC to secondary cancers may provide potential prognostic indicators for this hard-to-treat breast cancer subtype. study cohort