Project description:Purpose: Analyze changes in the transcriptome of Arabidopsis thaliana in response to sublethal concentrations of silver nanoparticles in order to gain insight into phytotoxicity caused by these nanomaterials. Methods: mRNA was extracted from non-treated and silver nanoparticle-treated 14-day old Arabidopsis thaliana seedlings using the RNAeasy extraction kit (Qiagen). RNA-seq libraries (3 rep/treatment and 3 reps/control) constructed with the TruSeq Stranded mRNA Sample Preparation kit (Illumina) were single-end sequenced (100-nt read length) on an Illumina HiSeq2500 system. Reads were mapped to the A. thaliana TAIR10 reference genome sequence and transcript levels were analyzed using the softare CLC Genomics Workbench (version 7.0.40, Qiagen). Results: Chronic exposure of A. thaliana plants to silver nanoparticles caused a change in abundance of transcripts involved in cell wall synhtesis and response to oxidative and biotic stress-related genes. Conclusions: While exposure to silver nanoparticle lead to gene expression changes, the reduction in chlorophyll concentration and carbon assimilation rate measured in exposed plants cannot be attributed to a shift in photosynthesis-related gene regulation.
Project description:Purpose: Analyze changes in the transcriptome of Arabidopsis thaliana in response to chronic exposure to silver nitrate at 4 μg/mL concentration. Methods: mRNA was extracted from non-treated and silver nitrate-treated 14-day old Arabidopsis thaliana seedlings using the RNAeasy extraction kit (Qiagen). RNA-seq libraries (3 rep/treatment and 3 reps/control) constructed with the TruSeq Stranded mRNA Sample Preparation kit (Illumina) were paired-end sequenced (100-nt read length) on an Illumina Nova Seq6000 system. Reads were mapped to the A. thaliana TAIR10 reference genome sequence and transcript levels were analyzed using the softare CLC Genomics Workbench (version 20.0.4, Qiagen). Results: Chronic exposure of A. thaliana plants to silver nitrate caused a change in the abundance of transcripts: AT2G01520 and AT4G12550, but no measureable impact on the rest of the transcriptome. Conclusions: Exposure of A. thaliana to silver nitrate at 4 μg/mL has minor impact on the transcriptome.
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:Experiments were achieved on Arabidopsis thaliana. Transcriptional profiling of roots and shoots from plants treated with lead were compared to plants treated in similar conditions without lead. Four weeks old A. thaliana seedlings were treated in hydroponic cultures with Pb during 3 days, by adding or not 40 µM Pb(NO3)2.
Project description:This study aims to identify genes which help to understand similar underlying mechanism in the response to shade and wounding in Arabidopsis thaliana plants.
Project description:We examined the changes in gene expression in Arabidopsis thaliana grown under arsenate stress. The transcriptional profiling reveals antioxidant activity and repression of the phosphate starvation response. Keywords: dual label, stress response