Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum.
Project description:We report a complete transcriptomic study of Fusarium graminearum in response to glucose, cellulose, xylan and cell wall fragments with a whole genome microarray from febit.
Project description:Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops, such as wheat, barley, and maize. Conidiogenesis had been intensively studied in Aspergillus nidulans and regulatory pathway genes have been known to regulate conidiogenesis in stage specific manner. We reported the functional analyses of flbD, abaA, and wetA orthologs in F. graminearum. To understand genome-wide transcriptional profiling of conidiation, we employed RNA-seq of the wild-type Fusarium graminearum Z-3639 and each gene deletion mutants with three time courses (0 h, 6 h and 12 h after induction of conidiogenesis). AbaA experiment: 6 samples examined: 0 h, 6 h and 12 h after induction of conidiogenesis of Fusarium graminearum Z-3639 wild type and ΔabaA(ΔabaA::gen) mutant strains WetA experiment: 3 samples examined: 0 h, 6 h and 12 h after induction of conidiogenesis of Fusarium graminearum ΔwetA(ΔwetA::gen) mutant strains flbD experiment: 3 samples examined: 0 h, 6 h and 12 h after induction of conidiogenesis of Fusarium graminearum ΔflbD(ΔflbD::gen) mutant strains
Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum. This dataset includes the cellular control sample that was analysed with shotgun mass-spec proteomics followed SearchGUI and Peptide shaker searches.
Project description:We report a complete transcriptomic study of Fusarium graminearum in response to glucose, cellulose, xylan and cell wall fragments with a whole genome microarray from febit. Fusarium graminearum was cultured at 25 °C on minimal M3 medium with glucose, birch wood xylan, carboxy methyl cellulose or hop cell wall as sole carbon source at a concentration of 10 g/L. Microarray experiments were achieved with a Geniom device (febit biomed, Germany). Each of the four tested condition was tested with two biological and two technical replicates.