Project description:To investigate how organisms mitigate the deleterious effects of mistranslation during evolution, a mutant tRNA was expressed in S. cerevisiae. The expression of Candida Ser-tRNACAG from a low copy plasmid in S. cerevisiae promoted mistranslation events by random incorporation of both serine and leucine at CUG codons. As mistranslation causes an overload of the protein quality pathways, it disrupts cellular protein homeostasis leading to a major fall in fitness. Laboratory evolutionary experiments were performed to study whether the fitness cost of mistranslation can be lowered. We also wanted to identify the cost-reduction strategy: reducing the frequencies of errors (mitigation), or increasing tolerance to errors (robustness), either by global or local activities.
Project description:To investigate how organisms mitigate the deleterious effects of mistranslation during evolution, a mutant tRNA was expressed in S. cerevisiae. The expression of Candida Ser-tRNACAG from a low copy plasmid in S. cerevisiae promoted mistranslation events by random incorporation of both serine and leucine at CUG codons. As mistranslation causes an overload of the protein quality pathways, it disrupts cellular protein homeostasis leading to a major fall in fitness. Laboratory evolutionary experiments were performed to study whether the fitness cost of mistranslation can be lowered. We also wanted to identify the cost-reduction strategy: reducing the frequencies of errors (mitigation), or increasing tolerance to errors (robustness), either by global or local activities. Gene expression was measured in the ancestor (non-evolved) lineage in two different situations: 1) carrying an empty vector and 2) expressing the mutant Ser-tRNACAG. Gene expression was also measured in three ambiguously evolved lineages (B3, D11, H9) in both situations (carrying an empty vector and expressing the mutant tRNA). Three independent experiments were performed for each lineage. Non-evolved strain with empty vector was used as control sample.
Project description:Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality-control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes.
Project description:Mistranslation, the mis-incorporation of an amino acid not specified by the “standard” genetic code, occurs in all cells. tRNA variants that increase mistranslation arise spontaneously and engineered tRNAs can achieve mistranslation frequencies approaching 10% in yeast and bacteria. The goal of this study was to assess the transcriptome changes in yeast cells expressing two different mistranslating tRNA variants which mistranslate at similar frequencies (of ~ 3%) but result in different substitutions, namely alanine at proline codons or serine at arginine codons.
Project description:To address the mechanisms of suppression, we analyzed time course of mRNA expression of four suppressed smc2-8 mutant strains. We addressed the question of genomic robustness by systematically screening genomic open reading frames, when induced for high-level expression, for their ability to suppress 55 conditional lethal mutations in yeast, and have discovered 636 suppressor genes participating in 822 novel dosage suppressor interactions. The suppressor genes are functionally broad and are enriched for overlapping open reading frames where mutually overlapping genes tend to be co-suppressors. Studies on suppressors of defects in chromosome condensation, telomere stability, and RNA polymerase II function suggest that adding interactions, by making significant connections where only weak or undetectable interactions were present (rewiring of gene regulatory pathways, and interaction within and between protein complexes) are frequent mechanisms of dosage suppression.
Project description:Increasing yeast robustness against biomass-derived inhibitors and insoluble solids is essential for the realization of a bio-based economy. The xylose-fermenting Saccharomyces cereivisiae F12 strain was subjected to an adaptive laboratory evolution experiment in the presence of these stressors. The resulting evolved strain exhibit better fermentation performance in terms of xylose consumption and ethanol yields than the parental strain. The overexpression of genes related to cell wall integrity and the stress response, together with the downregulation of protein synthesis and iron transport and homeostasis were highlighted as the major biological processes responsible for the improved phenotype.