Project description:Gestational diabetes mellitus (GDM) affects approximately 18% of pregnancies in the United States and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by anatomical and molecular alterations in the placenta associated with GDM. To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation (Infinium HumanMethylation450 Beadchips) and expression (Affymetrix Transcriptome Microarrays) in placental tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of immune response pathways among differential expression, reflecting these coordinated changes in the MHC region. Our study represents the largest investigation of transcriptomic and methylomic differences associated with GDM, providing comprehensive insight into the molecular basis of GDM induced fetal (re)programming. Bisulphite converted DNA extracted from the placentas (maternal-side) of 41 clinically-confirmed cases of GDM and 41 pregnancies without maternal complications were hybridised to the Illumina Infinium HumanMethylation450 Beadchips
Project description:We performed genome-wide methylation analysis of primary feto-placental arterial and venous endothelial cells from healthy (AEC and VEC) and GDM complicated pregnancies (dAEC and dVEC). Parallel transcriptome analysis identified variation in gene expression linked to GDM-associated DNA methylation, implying a direct functional link. Pathway analysis found that genes altered by exposure to GDM clustered to functions associated with ’Cell Morphology’ and ’Cellular Movement’ in both AEC and VEC. Further functional analysis demonstrated that GDM exposed cells have altered actin organization and barrier function. Our data indicate that exposure to GDM programs atypical morphology and barrier function in feto-placental endothelial cells by DNA methylation and gene expression change. The effects differ between AEC and VEC, indicating a stringent cell-specific sensitivity to adverse exposures associated with developmental programming in utero.
Project description:We performed genome-wide methylation analysis of primary feto-placental arterial and venous endothelial cells from healthy (AEC and VEC) and GDM complicated pregnancies (dAEC and dVEC). Parallel transcriptome analysis identified variation in gene expression linked to GDM-associated DNA methylation, implying a direct functional link. Pathway analysis found that genes altered by exposure to GDM clustered to functions associated with ’Cell Morphology’ and ’Cellular Movement’ in both AEC and VEC. Further functional analysis demonstrated that GDM exposed cells have altered actin organization and barrier function. Our data indicate that exposure to GDM programs atypical morphology and barrier function in feto-placental endothelial cells by DNA methylation and gene expression change. The effects differ between AEC and VEC, indicating a stringent cell-specific sensitivity to adverse exposures associated with developmental programming in utero.
Project description:Gestational diabetes mellitus (GDM) affects approximately 18% of pregnancies in the United States and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by anatomical and molecular alterations in the placenta associated with GDM. To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation (Infinium HumanMethylation450 Beadchips) and expression (Affymetrix Transcriptome Microarrays) in placental tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of immune response pathways among differential expression, reflecting these coordinated changes in the MHC region. Our study represents the largest investigation of transcriptomic and methylomic differences associated with GDM, providing comprehensive insight into the molecular basis of GDM induced fetal (re)programming. RNA extracted from the placentas (maternal-side) of 30 clinically-confirmed cases of GDM and 25 pregnancies without maternal complications was hybridised to the GeneChip® Human Transcriptome Array 2.0 (Affymetrix). Four samples were run in triplicate.
Project description:Inflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase. We used whole transcriptome microarray to monitor gene expression profies of several genes
Project description:Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.
Project description:BackgroundMurine kobuviruses (MuKV) are newly recognized picornaviruses first detected in murine rodents in the USA in 2011. Little information on MuKV epidemiology in murine rodents is available. Therefore, we conducted a survey of the prevalence and genomic characteristics of rat kobuvirus in Guangdong, China.ResultsFecal samples from 223 rats (Rattus norvegicus) were collected from Guangdong and kobuviruses were detected in 12.6% (28) of samples. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions showed that rat kobuvirus obtained in this study were genetically closely related to those of rat/mouse kobuvirus reported in other geographical areas. Two near full-length rat kobuvirus genomes (MM33, GZ85) were acquired and phylogenetic analysis of these revealed that they shared very high nucleotide/amino acids identity with one another (95.4%/99.4%) and a sewage-derived sequence (86.9%/93.5% and 87.5%/93.7%, respectively). Comparison with original Aichivirus A strains, such human kobuvirus, revealed amino acid identity values of approximately 80%.ConclusionOur findings indicate that rat kobuvirus have distinctive genetic characteristics from other Aichivirus A viruses. Additionally, rat kobuvirus may spread via sewage.