Project description:Nontargeted and targeted metabolomics measurements of abiotic stress responses in three-week-old Arabidopsis thaliana plants' rosette leaf tissue for Col-0 wild type plants and double/triple knockout mutants of aquaporins (pip2;1 pip2;2 and pip2;1 pip2;2 pip2;4) treated with drought, heat at different air humidities, or combined drought-heat stress at different air humidities. This experiment contains FT-ICR-MS measurements for 103 Arabidopsis thaliana rosette leaf samples covering three genotypes under six different environmental conditions. The three genotypes comprise the Col-0 wildtype and two loss-of-function mutants of aquaporins, a pip2;1 pip2;2 double mutant and a pip2;1 pip2;2 pip2;4 triple mutant (respective AGI locus identifiers: AT3G53420, AT2G37170, AT5G60660). The six conditions include control condition (well-watered, 22 °C, 70% relative air humidity), drought stress (one week without watering), heat stress without changing the absolute humidity of the ambient air (6 hours at 33 °C, 37% relative air humidity), heat stress with supplemented air humidity to maintain a constant vapor pressure deficit before and during the heat episode (6 hours at 33 °C, 84% relative air humidity), and the combinations of drought pretreatment with each of the two heat stress variants (one week of drought followed by 6 hours of heat stress). Samples from all conditions were harvested at the same time (within 15 min starting at 5 pm). For validation, GC-TOF-MS measurements were done for two genotypes (wildtype, double mutant) and two conditions (drought, control) on partially overlapping samples.
Project description:Analysis of transcriptome response of heat treated or untreated 7-day old whole seedlings with genotypes: Col-0 (wild type), p35S:ERF95 overexpression line and p35S:ERF97 overexpression line. ERF95 and ERF97 are involved in heat stress response. Results provide insight into the nuclear genes expression profile under heat treatment in Col-0, the nuclear genes expression profile regulated by either ERF95 and ERF97 overexpression before and after heat treatment, and the regulation similarity between ERF95 and ERF97 overexpression lines.
Project description:The total mRNA and polysomal RNA expression profiles of wild type (Col-0) and the quadruple spa mutant (spaQ) were analyzed under dark or in 4 hour light treated condition. The gene expression changed in spaQ mutant was analyzed and compared with Col-0.
Project description:The CAMTA1 mutant and Col-0 were studied under water and drought condition. The camta1 showed stunted primary root growth under osmotic stress. The expression analysis revealed drought recovery as major indicative pathway along with membrane and chloroplast related protein in camta1 under drought stress. Large number of positively regulated genes were related to osmotic balance, transporters, AP2 and ABA. We used Affymetrix expression analysis to validate the role of CAMTA1 under drought stress.
Project description:HSFA1s are a gene family of HSFA1 with four members, HSFA1a, HSFA1b, HSFA1d, and HSFA1e. HSFA1s are the master regulators of heat shock response. As a part of the heat shock response, HSFA2 can prolong the heat shock response and amplify the heat shock response in response to repeat heat shock. To identify the heat-shock-responsive genes differentially regulated by HSFA1s and HSFA2, we compared the transcriptomic differences of plants containing only constitutively expressed HSFA1s or HSFA2 after heat stress. hsfa2 (the KO mutant of HSFA2, Col-0 background) and A2QK-10 (CaMV 35S:HSFA2 in QK mutant; QK is HSFA1a/b/d/e quadruple KO mutant) were used to compare the difference of heat shock response when plants lack HSFA1s or HSFA2. The aim is to find the HSFA1s- and HSFA2-preferred regulating genes after heat stress. As the control samples, wild type is the plant with normal heat shock response, and QK (HSFA1s KO mutant, Col-0 and Ws mixed background) is the plant that lost the heat shock response controlled by HSFA1s.
Project description:In this work, we describe a TDNA insertion mutant for Mediator complex subunit 8 (MED8) that regulates the oxidative stress responses. Wild-type Col-0 and med8 seedlings were growth under control condition or oxidative stress (induced by methyl viologen treatment) and were subjected to RNA-seq profiling. Total mRNA fractions were isolated and subjected to signle-end deep sequencing (approx.30M reads/sample) to reveal differential expression between genotypes and conditions.
Project description:To understand plant adaptation to heat stress, gene expression profiles of Arabidopsis leaves under heat stress, during recovery and control condition were obtained using microarray. Microarray data listed responsible candidate genes for glycerolipid metabolism. Arabidopsis thaliana ecotype Columbia (Col-0) seeds were surface-sterilised and sown on an agar-solidified Murashige and Skoog medium. Plants were grown at 22ºC under a 16-h-light/8-h-dark cycle. Vegetative plants were subjected to high temperature for a day, then continued to be grown under normal condition for a day.
Project description:This experiment contains microarray measurements for 135 Arabidopsis thaliana rosette leaf samples covering three genotypes under six different environmental conditions. The three genotypes comprise the Col-0 wildtype and two loss-of-function mutants of aquaporins, a pip2;1 pip2;2 double mutant and a pip2;1 pip2;2 pip2;4 triple mutant (respective AGI locus identifiers: AT3G53420, AT2G37170, AT5G60660). The six conditions include control condition (well-watered, 22°C, 70% relative air humidity), drought stress (one week without watering), heat stress without changing the absolute humidity of the ambient air (6 hours at 33°C, 37% relative air humidity), heat stress with supplemented air humidity to maintain a constant vapor pressure deficit before and during the heat episode (6 hours at 33°C, 84% relative air humidity), and the combinations of drought pretreatment with each of the two heat stress variants (one week of drought followed by 6 hours of heat stress). Samples from all conditions were harvested at the same time (within 15 min starting at 5 p.m.).
Project description:Transcriptional profiling of rossette leaves comparing wild type (Col-0) and the mutant (hsi2-5) under no drought or simulated drought stress.
Project description:The intent of the experiment was to infer from transcriptome data the differential activation of LTR retrotransposon family members from Onsen/COPIA78, an Arabidopsis thaliana's heat-activated retrotransposon. For this, we performed Illumina 150 bp pair-end RNA-seq, in both wild-type Col-0 and RdDM mutant nrpd1-3 under control and heat stress.