Project description:we used high-throughput Illumina Genome Analyzer IIx (GAIIx) technology to sequence the small RNA transcriptomes of the mangrove species, Avicennia marina. Based on sequence similarity or the secondary structure of precursors, we have identified 193 conserved miRNAs and 26 novel miRNAs in the small RNA transcriptome of Avicennia marina.
Project description:we used high-throughput Illumina Genome Analyzer IIx (GAIIx) technology to sequence the small RNA transcriptomes of the mangrove species, Avicennia marina. Based on sequence similarity or the secondary structure of precursors, we have identified 193 conserved miRNAs and 26 novel miRNAs in the small RNA transcriptome of Avicennia marina. 1 sample
Project description:Bacterial diversity and community structure continuum analysis of rhizosphere, pneumatophore and bulk soils marine sediment of Avicennia marina
Project description:Rhizosphere is a complex system of interactions between plant roots, bacteria, fungi and animals, where the release of plant root exudates stimulates bacterial density and diversity. However, the majority of the bacteria in soil results to be unculturable but active. The aim of the present work was to characterize the microbial community associated to the root of V. vinifera cv. Pinot Noir not only under a taxonomic perspective, but also under a functional point of view, using a metaproteome approach. Our results underlined the difference between the metagenomic and metaproteomic approach and the large potentiality of proteomics in describing the environmental bacterial community and its activity. In fact, by this approach, that allows to investigate the mechanisms occurring in the rhizosphere, we showed that bacteria belonging to Streptomyces, Bacillus and Pseudomonas genera are the most active in protein expression. In the rhizosphere, the identified genera were involved mainly in phosphorus and nitrogen soil metabolism.
Project description:Gene expression patterns of the plant colonizing bacterium,Pseudomonas putida KT2440 were evaluated as a function of growth in the Arabidopsis thaliana rhizosphere. Gene expression in rhizosphere grown P. putida cells was compared to gene expression in non-rhizosphere grown cells. Keywords: Gene expression