Project description:High fat diet (HF) rodent models have contributed significantly to the dissection of the pathophysiology of the insulin resistance syndrome, but their phenotype varies distinctly between different studies. Here, we have analyzed gene expression patterns in livers of animals fed with different HF with varying fatty acid compositions. Experiment Overall Design: Male Wistar rats were fed with high fat diets (42 energy%, fat sources: lard, olive oil; coconut fat; cod liver oil). Weight, food intake, whole body insulin tolerance and plasma parameters of glucose and lipid metabolism were measured during a 12 week diet course. Liver histologies and hepatic gene expression profiles using AffymetrixR gene chips were obtained.
Project description:The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. Briefly, 7-week-old male C57BL/6J mice purchased from Charles River Laboratories Japan (Yokohama) were divided into the following five groups. The normal diet group (ND group) was fed D12450B (10 kcal% fat, Research Diets, New Brunswick, NJ, USA). The high-fat diet group (HF group) was fed D12492 (60 kcal% fat, Research Diets, New Brunswick, NJ, USA). The caffeinated coffee group (HFCC group) was fed a high-fat diet containing 2% caffeinated freeze-dried coffee. The decaffeinated coffee group (HFDC group) was fed a high-fat diet containing 2% decaffeinated freeze-dried coffee. The green unroasted coffee group (HFGC group) was fed a high-fat diet containing 2% unroasted caffeinated freeze-dried coffee. The mice had ad libitum access to their diets and drinking water. After 9 weeks, mice were sacrificed and the livers were subjected to the Affymrtix DNA microarray experiment.
Project description:Purpose: To investigate the effects of weight cycling on the metabolic homeostasis Methods: C57BL/6 mice were fed with high fat diet (HF) (60% kcal fat; Research Diets Inc., New Brunswick, NJ) or low fat diet (LF) (10% kcal fat; Research Diets Inc.) at 6-week-old. Nine weeks after in HF, a part of mice was switched to LF for one week followed by one week HF as one cycle, and the mice under this one week diet switch protocol for 10 cycles were named HF-LF cycled mice, while the left part of mice under continuously HF-feeding were named HF mice. The mice kept in the continuously LF-feeding were named LF mice Results: We identified many changed genes in the eWAT by RNA-sequencing. Conclusions: This finding provides a signaling in eWAT upon weight cycling
Project description:Dietary proteins have profound effects on lipid metabolism but the mechanism remains to be elucidated. In the present study, we examined the temporal impact of dietary proteins in isoenergetic high fat diets on lipid metabolism of C57BL/6J mice. Mice were first fed a low protein (P) to carbohydrate (C) ratio high-fat diet (L-P/C-HF) for 10 weeks and then a half of mice were changed to a high protein to carbohydrate ratio high-fat diet (H-P/C-HF) for additional 4 weeks whereas the remaining mice continued eating the L-P/C-HF diet.
Project description:Twelve midlactation cows received 4 diets differing in forage-to-concentrate ration (High (HF) versus Low (LF) forage supplemented or not with lipids (HF with whole intact rapeseeds (HF-RS) and LF with sunflower oil (LF-SO))
Project description:The impact of high fat diet on secreted milk small RNA transcriptome was studied by isolating total RNA from milk fat fraction collected on lactation day 10 from control diet fed (C; n=5; 10% fat; 7% sucrose; Research Diets #D12450J, Brunswick, NJ) and high fat diet fed (HF; n=4; Research Diets #D12492, 60% of total kcal energy is fat and match 7% of total kcal is sucrose; Brunswick, NJ) mice.
Project description:The impact of high fat diet on secreted milk small RNA transcriptome was studied by isolating total RNA from milk fat fraction collected on lactation day 10 from control diet fed (C; n=5; 10% fat; 7% sucrose; Research Diets #D12450J, Brunswick, NJ) and high fat diet fed (HF; n=4; Research Diets #D12492, 60% of total kcal energy is fat and match 7% of total kcal is sucrose; Brunswick, NJ) mice.
Project description:To understand differences in microRNA (miRNA) signatures between two different diets with and without EPA in brown, subcutaneous, and viscerl tissue from C57BL/6 mice to understand mechanistic insight regarding their contribution to metabolic disorders in obesity. We performed small RNA-sequencing of brown, subcutaneous adipose from high fat diet (45% kcal from fat) and high fat diet supplemented with EPA (45% Kcal from fat, 6.75% EPA). Using the Gunaratne Next Generation pipeline (published in Creighton et al. 2009) miRNA expression profiles were identified. Counts of each unique read were normalized to total usable reads, and had 40 counts added. We mapped about 13.8 million sequence reads per sample to the Mus musculus genome (build mm 10). AS a total 1251 miRNAs were identified in three adipose tissue and out of which in bown adipose tissue 15 showd differential expression between BF-HF and BF-EPA .IN subcutaneous adipose tissue 3 miRNAs showed differntial expression between SUB-HF and SUB-EPA. EPA differentially regulate specific miRNAs expression in brown, subcutaneous, and visceral adipose tissue.
Project description:Twelve midlactation cows received 4 diets differing in forage-to-concentrate ration (High (HF) versus Low (LF) forage supplemented or not with lipids (HF with whole intact rapeseeds (HF-RS) and LF with sunflower oil (LF-SO)) 12 cows got into 4 groups, each cow was received 4 different diets in a latin square design Green*txt and Red_*txt raw data files contain Cy3 and Cy5 signal intensities, respectively.