Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:GPS2 binding sites in BMDMs can be localized specially in enhancers (H3K27ac) and promoters (H3K27ac, H3K4me3). Upon GPS2 knock-out in BMDMs, de-repression of certain inflammatory genes occur, as accompanied by increased recruitment of H3K27ac and H3K4me3 marks.
Project description:Obesity is a major risk factor for metabolic disorders like insulin resistance and diabetes. We previously identified GPS2 as a clinical relavant repressor of metaflammation. No animal KO models were used to study its physiological function in vivo. The role of GPS2 in macrophage activation and inflammation is also largely unknown. Here we developed a GPS2 myeloid specific KO mice to study the regulation of GPS2 in macrophage inflammation. We found GPS2 ablation was linked with significant upregulation in inflammation markers in BMDMs from this array.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility. Gene expression was measured in whole testis from males aged 62-86 days. Samples include 190 first generation lab-bred male offspring of wild-caught mice from the Mus musculus musculus - M. m. domesticus hybrid zone.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Tto investigate whether ablation of miR-144/451 is deleterious for th3+/- mice, we crossed miR-144/451 knockout (mKO) mice (with mild anemia at baseline)13 with th3+/- mice (with severe anemia). We found that mKO/th3+/- double-mutant mice exhibited dramatic improvement in anemia. To explore the mechanism of anemia improvement in mKO/th3+/- mice, we fractionated erythroblasts from bone marrow of four genotypes mice, including WT,mKO, th3+/-,mKO/th3+/- mice,for microarray analysis.
Project description:The ketogenic diet has been successful in promoting weight loss among patients that have struggled with weight gain. This is due to the cellular switch in metabolism that utilizes liver-derived ketone bodies for the primary energy source rather than glucose. Fatty acid transport protein 2 (FATP2) is highly expressed in liver, small intestine, and kidney where it functions in both the transport of exogenous long chain fatty acids (LCFA) and in the activation to CoA thioesters of very long chain fatty acids (VLCFA). We have completed a multi-omic study of FATP2-null (Fatp2-/-) mice maintained on a ketogenic diet (KD) or paired control diet (CD), with and without a 24-hour fast (KD-fasted and CD-fasted) to address the impact of deleting FATP2 under high-stress conditions. Control (wt/wt) and Fatp2-/- mice were maintained on their respective diets for 4-weeks. Afterwards, half the population was sacrificed while the remaining were fasted for 24-hours prior to sacrifice. We then performed paired-end RNA-sequencing on the whole liver tissue to investigate differential gene expression. The differentially expressed genes mapped to ontologies such as the metabolism of amino acids and derivatives, fatty acid metabolism, protein localization, and components of the immune system’s complement cascade, and were supported by the proteome and histological staining.