Project description:Publication title: Pseudonodule formation by wild type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors This SuperSeries is composed of the following subset Series: GSE27991: Expression data of Medicago truncatula Jemalong A17 roots treated with auxin transport inhibitors GSE28171: Expression data of Medicago truncatula Jemalong A17 roots treated with S. meliloti exoA mutant or auxin transport inhibitors GSE28172: Expression data of Medicago truncatula skl1-1 roots treated with S. meliloti wild-type or auxin transport inhibitors GSE28173: Genes differentially expressed in wild-type Medicago truncatula plants during nodulation Refer to individual Series
Project description:This SuperSeries is composed of the following subset Series: GSE33636: Gene expression data from Medicago truncatula plantlet roots treated with symbiotic lipochitooligosaccharides (LCOs). GSE33637: Gene expression data from Medicago truncatula mutant plantlet roots treated with Myc-LCOs. Refer to individual Series
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti. Three independent biological replicates were performed at each time point (1 and 7 days after treatment) for each treatment (buffer and ATI).
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti. Three to five independent biological replicates were performed for each treatment (buffer, exoA bacteria and ATI) at 21 days after treatment.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti. Three independent biological replicates were performed for each treatment (buffer, ATI and wild-type bacteria) at 21 days after treatment.
Project description:Little progress has been made in studying the toxicity of realistic 'non-pristine' forms of nanoparticles that presents in real soil environment. It is presently unkown whether the transformed nanoparticles in realistic environment exerts an adverse effect to rhizobium-legume symbiosis on molecular level. We used microarray to investigate the toxicogenomic responses of the model legume Medicago truncatula following 30 days exposure to three different types of biosolids (control biosolids (control BS), a mixture of Ag, ZnO and TiO2 manufactured nanomaterials added biosolids (Nano BS) and a corresponding bulk metals added biosolids (Bulk BS) ) amended soil that were aged for 6 months prior to exposure in pot experiment. Our Genechip® Medicago Genome Array is designed specially to monitor gene expression in Medicago truncatula, Medicago sativa, and the symbiotic organism Sinorhizobium meliloti. For our study, RNA were extracted from shoots and roots of Medicago truncatula that exposure to control, Bulk and Nano BS treatments for 30 days, and used for all hybridization on Affymetrix microarray. The objective of our study is to investigate the molecular mechanisms of toxicity of Nano BS in comparison with their counterpart Bulk BS treatment, using a commercial Medicago truncatula microarrays.
Project description:Publication title: Pseudonodule formation by wild type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors This SuperSeries is composed of the SubSeries listed below.