Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:Leaf explants of the superembryogenic Medicago truncatula line 2HA were treated with auxin (1-naphthaleneacetic acid) for one week to induce the formation of roots (Imin et al J Exp Bot 58:439-451). Gene expression in the leaves and the NAA treated tissue cultures was compared to identify transcripts expressed during the commitment to root formation in tissue culture. We have used the Affymetrix Medicago Genome Array GeneChip to compared gene expression in Medicago truncatula leaves and leaf explants that have been cultured for one week on NAA, to identify genes expressed during the commitment to root formation in tissue culture. Keywords: Cell type comparison
Project description:Publication title: Pseudonodule formation by wild type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors This SuperSeries is composed of the following subset Series: GSE27991: Expression data of Medicago truncatula Jemalong A17 roots treated with auxin transport inhibitors GSE28171: Expression data of Medicago truncatula Jemalong A17 roots treated with S. meliloti exoA mutant or auxin transport inhibitors GSE28172: Expression data of Medicago truncatula skl1-1 roots treated with S. meliloti wild-type or auxin transport inhibitors GSE28173: Genes differentially expressed in wild-type Medicago truncatula plants during nodulation Refer to individual Series
Project description:This SuperSeries is composed of the following subset Series: GSE33636: Gene expression data from Medicago truncatula plantlet roots treated with symbiotic lipochitooligosaccharides (LCOs). GSE33637: Gene expression data from Medicago truncatula mutant plantlet roots treated with Myc-LCOs. Refer to individual Series
Project description:To investigate the gene expression levels of Medicago truncatula roots after beneficial fungi Gongronella sp. w5 inoculated.Gongronella sp. w5 promoted M. truncatula growth and caused the accumulation of sucrose in M. truncatula root tissue at 16 day-post-inoculation (dpi) without invading into the root cells. The transport of photosynthetic product sucrose to the rhizosphere by M. truncatula root cells was accelerated by upregulating the SWEET gene.
Project description:we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively.