Project description:This study compares cardiac induction time-courses using (i) wild-type hESCs subjected to a standard directed differentiation protocol, (ii) EOMES knockout hESCs subjected to the same protocol, and (iii) EOMES KO / TET-ON hESCs subjected to a TET-ON protocol.
Project description:A simultaneous stimulation of the Activin / FGF, BMP, and WNT pathways is required for promoting most efficient mesoderm induction in human embryonic stem cells, as well as for subsequent differentiation into cardiomyocytes. To reveal the contributions of three of these signaling pathways to mesoderm formation and cardiac induction, comparative differentiation time-courses were recorded, varying the combinations of signaling factors administered to the cells during the first day of differentiation: FGF (F) + BMP (B) + WNT (W) treatment during the first 24 hours, or FGF + BMP, or BMP + WNT, or FGF + WNT
Project description:We performed whole transcriptome RNA sequencing experiments of neural differentiation time courses starting from human ES cells (EGFP-H1) and mouse EGFP-EpiS cells. Cells were sampled at high temporal frequency using an automated Tecan Tissue Culture robotics system to sample mouse cells every 4 mins and human cells every 10 mins for the first 10 hours of neural differentiation.
Project description:This study compares directed cardiac differentiation time-courses using (i) HuES6 cells with endogenous ISL1 knockout + inducible ISL1 transgene, and (ii) wild-type HuES6 cells. For the first series, a subset of samples was left untreated (= ISL1 knockout scenario) while another subset received doxycycline treatment to upregulate ISL1 at days 3 and 4 of differentiation (ISL1 rescue). For the second series, a subset of samples was differentiated under default conditions (no RA) while another subset received retinoic acid (RA) on days 3 and 4 of differentiation, which leads to an atrial-like phenotype.
Project description:Background: Ion channels are key determinants for the function of excitable cells but little is known about their role and involvement during cardiac development. Earlier work identified Ca2+-activated potassium channels of small and intermediate conductance (SKCas) as important regulators of neural stem cell fate. Here, we have investigated their impact on the differentiation of pluripotent cells towards the cardiac lineage. Methods and Results: We have applied the SKCa-activator EBIO on embryonic stem cells and identified this particular ion channel family as a new critical target involved in the generation of cardiac pacemaker-like cells: SKCa-activation led to rapid remodeling of the actin cytoskeleton, inhibition of proliferation, induction of differentiation and diminished teratoma formation. Time-restricted SKCa-activation induced cardiac mesoderm and commitment to the cardiac lineage as shown by gene regulation, protein and functional electrophysiological studies. In addition, the differentiation into cardiomyocytes was modulated in a qualitative fashion, resulting in a strong enrichment of pacemaker-like cells. This was accompanied by induction of the sino-atrial gene program and in parallel by a loss of the chamber-specific myocardium. In addition, SKCa activity induced activation of the Ras-Mek-Erk signaling cascade, a signaling pathway involved in the EBIO-induced effects. Conclusions: SKCa-activation drives the fate of pluripotent cells towards the cardiac lineage and preferentially into pacemaker-like cardiomyocytes. This provides a novel strategy for the enrichment of cardiomyocytes and in particular, the generation of a specific subtype of cardiomyocytes, pacemaker-like cells, without genetic modification. Untreated ES cells in three independent experiments: - Untreated control ES cells sample 1 (Con_1) - Untreated control ES cells sample 2 (Con_2) - Untreated control ES cells sample 3 (Con_3) EBIO-treated ES cells in three independent experiments: - EBIO-treated ES cells sample 1 (EBIO_1) - EBIO-treated ES cells sample 2 (EBIO_2) - EBIO-treated ES cells sample 3 (EBIO_3) Untreated differentiated ES cells in two independent experiments: - Untreated control differentiated ES cells sample 1 (Con_day5+10_1) - Untreated control differentiated ES cells sample 2 (Con_day5+10_2) EBIO-treated differentiated ES cells in two independent experiments: - EBIO-treated differentiated ES cells sample 1 (EBIO_day5+10_1) - EBIO-treated differentiated ES cells sample 2 (EBIO_day5+10_2)
Project description:Previous studies have demonstrated that distinct progenitor subpopulations of mesoderm display tissue specific and vascular potential: hemangioblasts, a progenitor population capable of generating cells of the hematopoietic, endothelial and vascular smooth muscle lineages, and a multipotential progenitor capable of generating progeny of the cardiac, endothelial and vascular smooth muscle lineages. Each of these populations is characterized by co-expression of brachyury (Bry) and Flk-1, although the hemangioblast population is established before the cardiovascular progenitors in ES cell differentiation cultures (e.g. d3.5 for hemagioblast, versus d4.5 for cardiovascular progenitors). To investigate the role of Notch signalling in the establishment of cardiac lineages, we used a tet-inducible ES cell line (Ainv18) engineered to express an activated form of the Notch4 receptor following doxycycline treatment. This line also expresses a GFP cDNA from the Bry locus. Following 3.0-3.5 days of serum stimulation, three distinct populations based on Flk-1 and GFP expression are observed: Bry-GFP-/Flk-1-, Bry-GFP+/Flk-1- and Bry-GFP+/Flk-1+ cells. Previous studies have shown that the Bry-GFP+/Flk-1+ population contains hemangioblasts, whereas the Bry-GFP+/Flk-1- population displays cardiac potential. Bry-GFP+/Flk-1+ cells, sorted from EB's derived from ES cell differentiation cultures exposed to serum for 3.5 days, were allowed to reaggregate for 24 in the presence or absence of doxycycline, and the total RNA harvested at 4, 12, 24, 48, and 96 hours post Dox induction for microarray analysis. The induced populations were compared to non-induced population harvested at the same time points.
Project description:Efficient directed cardiac induction of human embryonic stem cells requires an intermediate inhibition of WNT signaling, shortly after the initial induction of mesoderm. To reveal the significance of the WNT inhibition step during differentiation, two differential time-course analyses were performed - both comparing WNT-inhibited and non-WNT-inhibited samples: In the first time-course, the WNT inhibitor IWP-2 was either added or omitted on days 2 and 3, and in the second time-course, IWP-2 was either added or omitted on days 1 and 2.