Project description:Caloric restriction (CR) without malnutrition is one of the most consistent strategies for increasing mean and maximal lifespan and delaying the onset of age-associated diseases. Stress resistance is a common trait of many long-lived mutants and life-extending interventions, including CR. Indeed, better protection against heat shock and other genotoxic insults have helped explain the pro-survival properties of CR. In this study, both in vitro and in vivo responses to heat shock were investigated using two different models of CR. Murine B16F10 melanoma cells treated with serum from CR-fed rats showed lower proliferation, increased tolerance to heat shock and enhanced HSP-70 expression, compared to serum from ad libitum-fed animals. Similar effects were observed in B16F10 cells implanted subcutaneously in male C57BL/6 mice subjected to CR. Microarray analysis identified a number of genes and pathways whose expression profile were similar in both models. These results suggest that the use of an in vitro model could be a good alternative to study the mechanisms by which CR exerts its anti-tumorigenic effects. KEY WORDS: caloric restriction, heat shock, stress response, tumorigenesis, aging
Project description:Caloric restriction (CR) without malnutrition is one of the most consistent strategies for increasing mean and maximal lifespan and delaying the onset of age-associated diseases. Stress resistance is a common trait of many long-lived mutants and life-extending interventions, including CR. Indeed, better protection against heat shock and other genotoxic insults have helped explain the pro-survival properties of CR. In this study, both in vitro and in vivo responses to heat shock were investigated using two different models of CR. Murine B16F10 melanoma cells treated with serum from CR-fed rats showed lower proliferation, increased tolerance to heat shock and enhanced HSP-70 expression, compared to serum from ad libitum-fed animals. Similar effects were observed in B16F10 cells implanted subcutaneously in male C57BL/6 mice subjected to CR. Microarray analysis identified a number of genes and pathways whose expression profile were similar in both models. These results suggest that the use of an in vitro model could be a good alternative to study the mechanisms by which CR exerts its anti-tumorigenic effects. KEY WORDS: caloric restriction, heat shock, stress response, tumorigenesis, aging In Vivo: Male C57BL/6 mice (3 month old) were single-housed in duplex caging in a room maintained at a constant temperature (20-22 °C) and humidity (30-70%) in a light:dark 12:12-h schedule, according to established animal protocols and NIH guidelines. They were fed either a standard purified mouse diet (NIH-31) ad libitum (AL; n=10) or maintained on a 40% calorie restriction regimen (CR; n=10) for the six week study. B16F10 melanoma cells (ATCC® CRL-6475™) were purchased from American Type Culture Collection (Manassas, VA); they were cultured in Dulbecco's Modified Essential Medium (DMEM) supplemented with 10% fetal bovine serum and penicillin/streptomycin (Gibco, Gaithersburg, MD) under standard cell culture conditions. One month into the study, 5 mice from each diet group were injected with 1x106 B16F10 melanoma cells in the periscapular region. Fourteen days later, animals were euthanized and tumors were excised and frozen for RNA isolation. In Vitro: B16F10 melanoma cells were incubated in media with 10% serum from either AL- or CR-fed rats, serum was obtained from overnight fasted, anesthetized 6-month-old male Fisher 344 rats. Cells were grown for 96 hours before being harvested, washed and collected for RNA isolation. The RNA was extracted using the RNeasy Mini Kit from Qiagen using standard protocols and labeled with Biotin using the standard Illumina protocol. Samples were hybed overnight to Illumina's Sentrix MouseRef-8 v1.1 Expression BeadChips. Arrays were washed, stained with Cy-3 and scanned at 0.8 micron resolution in a 500 GX Illumina Bead Array Reader.
Project description:Protein translation factors play crucial roles in a variety of stress responses. Here, we show that the eukaryotic elongation factor 1Bdelta (eEF1Bdelta) changes its structure and function from a translation factor into a heat shock response transcription factor by alternative splicing. While eEF1Bdelta is specifically localized in the cytoplasm, the long isoform of eEF1Bdelta (eEF1BdeltaL) is localized in the nucleus and induces heat shock element (HSE)-containing genes in cooperation with heat-shock transcription factor 1 (HSF1). Moreover, the N-terminal domain of eEF1BdeltaL binds with NF-E2-related factor 2 (Nrf2) and induces stress response heme oxygenase 1 (HO-1). Specific inhibition of eEF1BdeltaL with siRNA completely inhibits Nrf2-dependent HO-1 induction. In addition, eEF1BdeltaL directly binds to HSE oligo DNA in vitro and associates with HSE containing the HO-1-enhancer region in vivo. Thus, the transcriptional role of eEF1BdeltaL could provide new insights into the molecular mechanism of stress responses. We performed microarray analysis to compare the gene expression induced by eEF1Bdelta1 or eEF1BdeltaL overexpression. HEK293 cells transfected with expression plasmids encoding flag-tagged-eEF1Bdelta1 or eEF1BdeltaL protein
Project description:Environmental stress, such as oxidative or heat stress, induces the activation of the heat shock response
(HSR) and leads to an increase in the heat shock proteins (HSPs) level. These HSPs act as molecular
chaperones to maintain cellular proteostasis. Controlled by highly intricate regulatory mechanisms,
having stress-induced activation and feedback regulations with multiple partners, the HSR is still
incompletely understood. In this context, we propose a minimal molecular model for the gene
regulatory network of the HSR that reproduces quantitatively different heat shock experiments both
on heat shock factor 1 (HSF1) and HSPs activities. This model, which is based on chemical kinetics
laws, is kept with a low dimensionality without altering the biological interpretation of the model
dynamics. This simplistic model highlights the titration of HSF1 by chaperones as the guiding line of
the network. Moreover, by a steady states analysis of the network, three different temperature stress
regimes appear: normal, acute, and chronic, where normal stress corresponds to pseudo thermal
adaption. The protein triage that governs the fate of damaged proteins or the different stress regimes
are consequences of the titration mechanism. The simplicity of the present model is of interest in
order to study detailed modelling of cross regulation between the HSR and other major genetic
networks like the cell cycle or the circadian clock.
Sivéry, A., Courtade, E., Thommen, Q. (2016). A minimal titration model of the mammalian dynamical heat shock response. Physical biology, 13(6), 066008.
Project description:Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related path- ways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mito- chondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology. Key words: astrocytes; caloric restriction; mitochondria; oxidative stress; RNA microarrays; SAMP8. Primary cultures enriched in astrocytes were obtained from cerebral cortical tissue from 2-day-old SAMP8 and SAMR1 mice. Astrocyte cultures were established and experiments were routinely carried out after 21 days in culture. Established astrocyte cultures of both SAMR1 and SAMP8 consisted of 85-90% astrocytes, 10-15% microglia and 0.1-1% oligodendroglia. Sera from rats subjected to ad libitum (AL) diet and to CR were obtained as described for the establishment of the CR in vitro model (de Cabo et al., 2003). Serum was heat inactivated at 56°C prior to use in astrocyte culture experiments. Treatment in vitro was performed by adding 10% volume CR or AL serum onto the astrocyte culture medium for 48 h, the cells were harvested and RNA was extracted for the microarray studies. Three biological replicates for each condition were done and RNA was extracted for the microarray studies. Please note that SAM models were developed from AKR/J by Kyoto University. Five litters with severe senescence were selected to further propagate and examine these characteristics. Litters that showed normal aging were selected as a senescence-resistant series (R-series). The genetic background of the SAM mice became suspect after the pathological findings were different from the AKR/J mouse. Each SAM model is genetically different. Each SAM colony was acquired by Harlan by Takeda Chemical Ltd. in 2002. And here is the link to the company site. http://www.harlan.com/products_and_services/research_models_and_services/research_models/sam_inbred_mice/samp8tahsd.hl
Project description:Protein translation factors play crucial roles in a variety of stress responses. Here, we show that the eukaryotic elongation factor 1Bdelta (eEF1Bdelta) changes its structure and function from a translation factor into a heat shock response transcription factor by alternative splicing. While eEF1Bdelta is specifically localized in the cytoplasm, the long isoform of eEF1Bdelta (eEF1BdeltaL) is localized in the nucleus and induces heat shock element (HSE)-containing genes in cooperation with heat-shock transcription factor 1 (HSF1). Moreover, the N-terminal domain of eEF1BdeltaL binds with NF-E2-related factor 2 (Nrf2) and induces stress response heme oxygenase 1 (HO-1). Specific inhibition of eEF1BdeltaL with siRNA completely inhibits Nrf2-dependent HO-1 induction. In addition, eEF1BdeltaL directly binds to HSE oligo DNA in vitro and associates with HSE containing the HO-1-enhancer region in vivo. Thus, the transcriptional role of eEF1BdeltaL could provide new insights into the molecular mechanism of stress responses. We performed microarray analysis to compare the gene expression induced by eEF1Bdelta1 or eEF1BdeltaL overexpression.
Project description:Since healthspan-extending interventions such as caloric restriction or fasting robustly promote lipid catabolism, we investigated how lifespan and healthspan were affected by increased lipid catabolism via bmm (brummer, FBgn0036449), the major triglyceride hydrolase in Drosophila. Global overexpression of bmm strongly promoted lifespan extension as well as numerous markers of healthspan, including increased female fecundity, fertility maintenance, preserved locomotion activity, increased mitochondrial biogenesis and oxidative metabolism. Increased Bmm robustly upregulated the heat shock protein 70 (Hsp70) family of proteins, which equipped the flies with higher resistance to heat, cold, and ER stress via improved proteostasis. Overexpression of bmm recapitulated major physiological changes associated with dietary restriction (DR) and conveyed its effects through dSir2. Taken together, these data show that bmm overexpression has broad beneficial effects on healthspan, and implicate lipolysis as a key node underlying the beneficial effects of dietary interventions known to improve healthspan.
Project description:Heat shock factor 1 (HSF1) is well known for its role in the heat shock response (HSR), where it drives a transcriptional program comprising heat shock protein (HSP) genes, and in tumorigenesis, where it drives a program comprising HSPs and many non-canonical target genes that support malignancy. Here, we find that HSF2, an HSF1 paralog with no significant role in the HSR, physically and functionally interacts with HSF1 across diverse types of cancer. HSF1 and HSF2 have strikingly similar chromatin occupancy and regulate a common set of genes which include both HSPs and non-canonical transcriptional targets with roles critical in supporting malignancy. Loss of either HSF1 or HSF2 results in a dysregulated response to nutrient stresses in vitro and reduced tumor progression in cancer cell line xenografts. Taken together, these findings establish HSF2 as a critical cofactor of HSF1 in driving a cancer cell transcriptional program to support the anabolic malignant state.