Project description:whole embryo (all tissues) measurement of mRNA decay by 4-thiouridine pulse-chase These TU-Decay microarrays analyze mRNA levels at three timepoints: a one hour pulse, one hour chase, and three hour chase. Measurements with or without transcription inhibition by actinomycin D (ActD) were compared.
Project description:Pumilio (PUM) is a Drosophila member of a conserved family of sequence-specific RNA-binding proteins that have been shown to regulate mRNA stability and/or translation in a variety of organisms. PUM has been shown to repress the translation of several mRNAs in the Drosophila early embryo; failure to repress these targets leads to lethal developmental defects. Here we use a combination of microarray-based gene expression profiling and next-generation sequencing to identify more than 200 mRNAs that are associated with full-length PUM protein in early embryos and to define a global role for PUM in mRNA decay. Surprisingly, despite the fact that PUM is maternally supplied and thus is present from the beginning of embryogenesis, the vast majority of PUM-directed decay occurs only after zygotic genome activation. We show that the smaug mRNA, which itself encodes an RNA-binding protein that directs transcript decay, is a direct target of PUM via binding sites in the smg 3'UTR. Whereas the endogenous smaug mRNA and the transgenic reporter mRNA that carries the smaug 3'UTR undergo decay after zygotic genome activation, a reporter with an array of PUM-binding sites decays before zygotic genome activation. These data support a model in which additional cis-elements in the smg 3'UTR delay decay until after zygotic genome activation.
Project description:Cytosine methylation in the genome of Drosophila melanogaster has been elusive and controversial: methylcytosine has been detected at very low levels in early embryos, but the genomic location and function of methylation has not been established. We have mapped cytosine methylation genomewide in Stage 5 Drosophila embryo DNA by combining immuno-enrichment for 5-methylcytosine, bisulfite conversion, and deep sequencing. Unlike methylation patterns observed in other eukaryotic species, methylation in Drosophila is punctate and highly strand-asymmetrical; we confirmed this by direct PCR amplification and sequencing of bisulfite-converted DNA. Despite the locally asymmetric nature of methylation, large-scale patterns of methylation are symmetric. Methylated regions make up ~1% of the genome, and within these regions methylation of individual cytosines averages 2-10%. Methylation is concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine. It is depleted from promoters, coding sequences, and most retrotransposons, and enriched in introns and in certain simple sequence repeats containing the commonly methylated motifs. Comparison with available gene expression data indicates that methylation in a gene is associated with lower expression; the X chromosome, which is subject to gene dosage compensation, is more densely methylated than the autosomes. This study firmly establishes the presence of cytosine methylation in Drosophila; the temporal overlap of methylation with the maternal-zygotic transition raises the possibility that methylation participates in the transition to zygotic gene expression. To enrich for rare cytosine methylation in Drosophila at embryonic Stage 5 (2-3 hours post-fertilization), we enriched sonicated Stage 5 genomic DNA for methylcytosine by immunoprecipitation with antibody to 5-methylcytosine. The immunoprecipitated DNA was then bisulfite converted and Illumina sequenced to obtain direct evidence for the presence of methylation. The presence and extent of DNA methylation was confirmed by Illumina sequencing of bisulfite-converted PCR amplicons.