Project description:A porcine microarray study of acute right ventricular failure due to coronary artery ligation of the right ventricular free wall. 1. Baseline sample from the free right ventricular wall. 2. Ligation of the coronary arteries on the right ventricular free wall induced right ventricular heart failure. When the pressure in the right atrium rose to >20 mmHg, heart failure samples were taken from the free right ventricular wall.
Project description:A porcine microarray study of right ventricular failure due to coronary artery ligation of the right ventricular free wall and subsequent treatment of right ventricular failure by volume unloading using a shunt between superior vena cava and the pulmonary artery (Glenn-shunt) 1. Surgical preparation with a 12 mm graft between superior vena cava and pulmonary artery, the graft is then clamped - Baseline sample using a biopsy needle. 2. After surgical preparation the coronary arteries of the right ventricular free wall are ligated, then heart failure develops over 120 minutes - Failure sample using a biopsy needle. 3. The shunt is then opened and the superior vena cava closed between the shunt and right atrium, diverting the blood from superior vena cava through the shunt for a period of 15 minutes partially unloading the right ventricle - Shunt sample using a biopsy needle. A series of six pigs, three samples from each animal: baseline, failure and shunt/treatment.
Project description:Arterial pulmonary hypertension is a rare disease, with little knowledge regarding its etiology, and high mortality. Development of right and later on also left ventricular heart insufficiency, secondary to pulmonary hypertension, is a negative predictive factor. Genetic and molecular processes underlying left heart ventricle remodeling over the course of pulmonary hypertension remain unknown. In particular, there is no knowledge regarding the mechanisms of left heart ventricle atrophy which was completely avoided by researchers until recently.The aim of this study was to assess changes in protein abundance in left and right heart ventricle free wall of rats in monocrotaline model of PAH.
Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.
Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.
Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.
Project description:Human left ventricular free wall heart tissue was obtained from end-stage heart failure patients at the moment of heart transplantation Left ventricular free wall samples were also obtained from healthy hearts of organ donors, which were not used for transplantation due to size mismatch with available recipients.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.