Project description:The piRNA machinery is known for its role in mediating epigenetic silencing of transposons. Recent studies suggest that this function also involves piRNA-guided cleavage of transposon-derived transcripts. As many piRNAs also appear to have the capacity to target diverse mRNAs, this raises the intriguing possibility that piRNAs may act extensively as siRNAs to degrade specific mRNAs. To directly test this hypothesis, we compared mouse PIWI (MIWI)-associated piRNAs with experimentally identified cleaved mRNA fragments from mouse testes, and observed cleavage sites that predominantly occur at position 10 from the 5' end of putative targeting piRNAs. We also noted strong biases for U and A residues at nucleotide positions 1 and 10, respectively, in both piRNAs and mRNA fragments, features that resemble the pattern of piRNA amplification by the 'ping-pong' cycle. Through mapping of MIWI-RNA interactions by CLIP-seq and gene expression profiling, we found that many potential piRNA-targeted mRNAs directly interact with MIWI and show elevated expression levels in the testes of Miwi catalytic mutant mice. Reporter-based assays further revealed the importance of base pairing between piRNAs and mRNA targets and the requirement for both the slicer activity and piRNA-loading ability of MIWI in piRNA-mediated target repression. Importantly, we demonstrated that proper turnover of certain key piRNA targets is essential for sperm formation. Together, these findings reveal the siRNA-like function of the piRNA machinery in mouse testes and its central requirement for male germ cell development and maturation. CLIP-Seq (Crosslinking Immunoprecipitation coupled with high-throughput sequencing) experiments targeting Miwi in isolated round spermatids from mouse testis.
Project description:The piRNA machinery is known for its role in mediating epigenetic silencing of transposons. Recent studies suggest that this function also involves piRNA-guided cleavage of transposon-derived transcripts. As many piRNAs also appear to have the capacity to target diverse mRNAs, this raises the intriguing possibility that piRNAs may act extensively as siRNAs to degrade specific mRNAs. To directly test this hypothesis, we compared mouse PIWI (MIWI)-associated piRNAs with experimentally identified cleaved mRNA fragments from mouse testes, and observed cleavage sites that predominantly occur at position 10 from the 5' end of putative targeting piRNAs. We also noted strong biases for U and A residues at nucleotide positions 1 and 10, respectively, in both piRNAs and mRNA fragments, features that resemble the pattern of piRNA amplification by the 'ping-pong' cycle. Through mapping of MIWI-RNA interactions by CLIP-seq and gene expression profiling, we found that many potential piRNA-targeted mRNAs directly interact with MIWI and show elevated expression levels in the testes of Miwi catalytic mutant mice. Reporter-based assays further revealed the importance of base pairing between piRNAs and mRNA targets and the requirement for both the slicer activity and piRNA-loading ability of MIWI in piRNA-mediated target repression. Importantly, we demonstrated that proper turnover of certain key piRNA targets is essential for sperm formation. Together, these findings reveal the siRNA-like function of the piRNA machinery in mouse testes and its central requirement for male germ cell development and maturation.
Project description:We deep-sequenced small RNAs after immunoprecipitation of Mili or Miwi, as well as total small RNA from adult mouse testis. The goal of this experiment is to more deeply characterize the piRNA pool from adult mouse testes, using the Illumina platform.
Project description:Piwi-interacting small RNAs (piRNAs) of fetal prospermatogonia of mice have been strongly implicated in transposon control. In contrast, little is known about biogenesis and function of abundant piRNAs from adult testes expressed in late spermatocytes and round spermatids. These so-called "pachytene" piRNAs are processed from long non-coding piRNA precursors and have no defined RNA targets in the transcriptome even though their binding partner Piwi, MIWI, is essential for spermiogenesis and fertility. Here we report that 129SvJae mice lacking Maelstrom (MAEL), a conserved piRNA pathway protein, exhibit spermiogenic arrest with defects in acrosome and flagellum formation. Further analysis revealed MAEL association with RNPs containing MIWI, TDRD6, and processed intermediates of pachytene piRNA precursors of various length. Loss of MAEL causes a 10-fold drop in pachytene piRNA levels but an increase in piRNAs from abundantly expressed mRNAs. These results suggest a MAEL-dependent mechanism for the selective processing of pachytene piRNA precursor into piRNAs. Strikingly, ribosome profiling of Mael-null testes revealed that reduced piRNA production is accompanied by reduced translation of over 800 spermiogenic mRNAs including those encoding acrosome and flagellum proteins. In light of recent reports of piRNA-independent protection of translationally repressed mRNPs by MIWI and piRNA-dependent turnover of MIWI, we propose that pachytene piRNAs function by controlling the availably of MIWI for the translational repression of spermiogenic mRNAs. piRNA sequencing, RNA immunoprecipitation, and expression measurements (RNA-Seq and ribosome profiling) in wild-type and Mael -/- testes
Project description:Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during post-natal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors, including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feed-forward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals. Transcriptome and ChIP sequencing in mouse and rooster testes
Project description:Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during post-natal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors, including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feed-forward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals. PAS-Seq and CAGE in mouse testes
Project description:Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during post-natal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors, including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feed-forward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals. ChIP sequencing in mouse and rooster testes.
Project description:Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during post-natal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors, including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feed-forward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals. smallRNA-Seq in mouse and rooster testes
Project description:piRNAs are a novel class of small noncoding RNAs that were recently identified in animal germ cells. This class of small noncoding RNAs is specifically associated with an evolutionarily conserved PIWI family proteins, which belong to the germline-specific members of the Argonaute protein family and are indispensable to germline development in animals. The PIWI/piRNA pathway has been deemed as an innate immune system that prevents mobile genetic elements from destabilizing DNA and that protects genome integrity in animal germ cells. By ribosome profiling using Miwi-null testes, we identified a group of ~600 mRNAs as likely direct piRNA targets for translational regulation in mouse spermatids. These results suggest that the mouse PIWI (MIWI)/piRNA is responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into elongated spermatids.
Project description:We deep-sequenced small RNAs after immunoprecipitation of Mili or Miwi, as well as total small RNA from adult mouse testis. The goal of this experiment is to more deeply characterize the piRNA pool from adult mouse testes, using the Illumina platform. Comparison of 2 IP libraries with a non-IP library