Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:Gene expression change in the liver of connexin dominant negative transgenic (Tg) and wild-type (Wt) rats fed methionine-choline deficient diet (MCDD) or MCDD with luteolin for 12 weeks.
Project description:The genomic landscape of hepatic tissue affected by nonalcoholic steatohepatitis (NASH) in severely obese adolescents undergoing bariatric surgery is unknown. Our purpose here was to uncover genomic profiles of obese controls, and obese cases with nonalcoholic fatty liver disease (NAFLD), borderline nonalcoholic steatohepatitis, and definite nonalcoholic steatohepatitis, in order to clarify molecular functions, biological processes, and pathways that are dysregulated in nonalcoholic steatohepatitis in the severely obese adolescent. In a prospective observational cohort study, we have intra-operatively obtained 165 liver samples; of these 67 were submited for microarray analysis. Through ANOVA, we found 8648 genes with differential regulation between the four histologies; from these, we uncovered gene signatures shared between borderline and definite nonalcoholic steatohepatitis, and gene sets with differential effects between borderline and definite.
Project description:Male Sprague-Dawley rats were used to establish exhausted-exercise model by motorized rodent treadmill. Yu-Ping-Feng-San at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Quantitative proteomics was performed for assessing the related mechanism of Yu-Ping-Feng-San.
Project description:The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids and regulates bile acid metabolism, glucose and cholesterol homeostasis. From mouse studies we know that the novel FXR agonist obeticholic acid (OCA) regulates expression of many genes in the liver, but there is currently no data on the effects of OCA on human liver gene expression. This is especially relevant since the novel FXR agonist OCA is currently tested in clinical trials for the treatment of several diseases, such as nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease (NAFLD) and Type 2 Diabetes. In this study we investigate the effect of OCA treatment on gene expression profiles and localization of FXR to the genome in relevant liver samples. ChIP-Seq for FXR in Liver tissue from 2 male mice treated with OCA/INT-747 (10mg/kg/day) and 2 male mice treated with vehicle (1% methyl cellulose).