Project description:Streptomyces tsukubaensis NRRL 18488 is the preferred strain for the production of immunosuppressant agent tacrolimus (FK506). To take full advantage of its genetic potential, systematic understanding of secondary metabolism and related regulatory mechanisms is highly demanded. Here, to this end, we complete its 7.9 Mbp linear genome sequence followed by integrating with multi-omics measurements. With accurate reannotation of FK506 gene cluster, total 2,389 transcription start sites were determined by using primary transcriptome analysis. Integrated analysis of transcriptome and translatome data revealed that secondary metabolic gene clusters, especially FK506 cluster, undergo translational control with decrease in translational efficiency according to the growth. Furthermore, we demonstrated that SD motif has little correlation with ribosome pausing but AT-rich codons delay the translational elongation. Strong ribosome pausing was observed in the rare TTA codon in FK506 cluster. This comprehensive genome-scale analysis provides insight to the translational regulation of secondary metabolism in S. tsukubaensis.
Project description:28 Streptomyces strains isolated from common scab lesions of potato tubers from a wide geographic range in Norway, were selected for microarray analysis. The selected strains were subjected to species identification by microarray, 16S phylogenetic analysis and PCR; and microarray-based comparative genome analysis. To our knowledge, this is the first report of S. turgidiscabies and S. europaeiscabiei in Norway. 28 Norwegian Streptomyces strains were hybridized in duplicates, one S.turgidiscabies strain (St32) and one S.scabies strain (ATCC49173) were hybridized in 4 replicates. Two out of 64 hybridizations failed (replicate hybridizations of Norwegian strains 33 and 44), for a total of 62 samples. Normalization was based on log-ratios against reference strain.
Project description:28 Streptomyces strains isolated from common scab lesions of potato tubers from a wide geographic range in Norway, were selected for microarray analysis. The selected strains were subjected to species identification by microarray, 16S phylogenetic analysis and PCR; and microarray-based comparative genome analysis. To our knowledge, this is the first report of S. turgidiscabies and S. europaeiscabiei in Norway.