Project description:To identify unique gene expression in cAMP supplemented Streptomyces coelicolor M145 strain. The genes with different gene expression might be key genes to understand the effects of cAMP supplementation on the transcriptome of Streptomyces coelicolor M145.
Project description:To identify unique gene expression in cAMP supplemented Streptomyces coelicolor M1146 strain. The genes with different gene expression might be key genes to understand the effects of cAMP supplementation on the transcriptome of Streptomyces coelicolor M1146.
Project description:We have integrated nucleotide resolution genome-scale measurements of the transcriptome and translatome of the Streptomyces coelicolor A3(2), the model antibiotic-producing actinomycete. Our systematic study determined 3,473 transcription start sites, leading to discovery of a high proportion (~21%) of leaderless mRNAs and 230 non-coding RNAs; this enabled deduction of promoter architecture on a genome-scale. Ribosome profiling analysis revealed that the translation efficiency was negatively correlated for secondary metabolic genes. These results provide novel fundamental insights into translational regulation of secondary metabolism that enables rational synthetic biology approaches to awaken such ‘silent’ secondary metabolic pathways.
Project description:We have integrated nucleotide resolution genome-scale measurements of the transcriptome and translatome of the Streptomyces coelicolor A3(2), the model antibiotic-producing actinomycete. Our systematic study determined 3,473 transcription start sites, leading to discovery of a high proportion (~21%) of leaderless mRNAs and 230 non-coding RNAs; this enabled deduction of promoter architecture on a genome-scale. Ribosome profiling analysis revealed that the translation efficiency was negatively correlated for secondary metabolic genes. These results provide novel fundamental insights into translational regulation of secondary metabolism that enables rational synthetic biology approaches to awaken such âsilentâ secondary metabolic pathways. Profiles of primary transcripts, whole transcripts, and ribosome protected fragments (RPFs) of Streptomyces coelicolor were generated by deep sequencing using Illumina Miseq.
Project description:To identify unique gene expression in higher antibiotics producing Streptomyces coelicolor strain, non-producer M1146 and the derivative strain M1146+ACT (M1146 with actinorhodin biosynthetic genes cluster) was choosen for comparative transcriptome analysis. The genes with different gene expression might be key genes important for antibiotics production.
Project description:This work was carried out to elucidate the proteins that are regulated by the two-component system CutRS in Streptomyces coelicolor M145 and how this response changes in the presence of glucose. A comparison of the whole cell proteomes of Streptomyces coelicolor M145 WT and Streptomyces coelicolor M145 ∆cutRS on both DNA (no glucose) and DNAD (with glucose) was made.
Project description:SYSTERACT: Systematic Rebuilding of Actinomycetes for Natural Product Formation For several decades antibiotics have saved millions of lives, but their overuse makes them less effective due to increase in bacterial resistance. Because of this major clinical and public health problem, there is an urgent need for new effective antimicrobials. The ERASysAPP project SYSTERACT aims to further develop, the model actinobacterium Streptomyces coelicolor into improved microbial cell factories to heterologously produce diverse bioactive compounds in amounts needed for structural and functional evaluation. Unprecedented systems biology understanding of S. coelicolor is being combined with morphology engineering and improved (de-)regulation and precursor supply to accelerate bioactive compound discovery efforts. By that means, we aim to generate a stepwise improved 'Superhost' for the production of antibiotics in which metabolic bottlenecks and regulatory restriction are greatly mitigated. The optimized strains will be tested concerning their applicability for an improved production of commercially relevant antibiotics and the expression of novel bioactive gene clusters identified in new actinomycete strains and environmental metagenomes. So far two strains, M145 and M1152, have been cultivated for time-resolved 'omics sampling, and a larger number of additional strains are on the list for similar experiments. High quality RNAseq-based transcriptome data have been generated and processed. M145 is the wildtype strain in S. coelicolor (as used in STREAM, see also GSE18489), 3 biol. replicas and M1152 lacks four major biosynthetic gene clusters, undecylprodigine (RED), calcium-dependent antibiotic (CDA), coelimycin (CPK) and actinorhodin (ACT). Contributors: A. Wentzel, W. Wohlleben, G. van Wezel, D van Dissel, O. Wolkenhauer, E. Kerkhoven, N. Spidsoe, K. Nieselt and the SYSTERACT consortium