Project description:We aimed to identify miRNA regulated by alternate bearing in O. europaea. For this purpose, six olive (Olea europaea L. )(Ayvalık variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves ("on-year" and "off-year" mature -leaven in November and juvenile - leaven in July plants) and sequenced by high-throughput Illumina sequencing. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in olive tree. In addition, 38 novel miRNA were discovered in the datasets. Expression of olive tree miRNA varied greatly among the six libraries, indicating contribution of diverse miRNA in balancing between reproductive and vegetative phases. The differential expression of miRNA was evaluated on the basis of the developmental phase of the samples. Sequences of six olive miRNAs (Olea europaea L. )(Ayvalık variety) plants (ripe and unripe fruits, leaves of mature and juvenile plants of both "on-year" and "off-year") were generated by Illumina sequencing
Project description:We aimed to identify miRNA regulated by alternate bearing in O. europaea. For this purpose, six olive (Olea europaea L. )(Ayvalık variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves ("on-year" and "off-year" mature -leaven in November and juvenile - leaven in July plants) and sequenced by high-throughput Illumina sequencing. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in olive tree. In addition, 38 novel miRNA were discovered in the datasets. Expression of olive tree miRNA varied greatly among the six libraries, indicating contribution of diverse miRNA in balancing between reproductive and vegetative phases. The differential expression of miRNA was evaluated on the basis of the developmental phase of the samples.
Project description:Cultivated olive tree (Olea europaea L. subsp. europaea var. europaea) is one of most relevant worldwide-extended crops. Since this plant has a huge effect on the economy of several regions, especially in those located in the Mediterranean basin, all efforts focused on its protection have a great relevance in agriculture sustainability. As all extended crops, olive tree cultivars are under the threat of a wide range of pathogens. Among them, Verticillium dahliae has been in the spotlight in the last decades because the disease caused by this soil-borne fungus (Verticillium wilt) is easily spread and can eventually kill the tree. In this line, many different factors have been studied in order to shed some light on the molecular/genetic mechanisms underlying the Olea europaea-Verticillium dahliae interaction, some of them focused on the gene expression pattern of the host. In this study, the expression pattern of roots from thirty-six O. europaea cultivars with different resistance/susceptibility degree to Verticillium wilt has been analyzed by RNA-Seq. As a result, processes involved in plant defense, transcription and root development have emerged as potential players in the differential response to Verticillium wilt of these cultivars. Additionally, a quite interesting set of 421 genes with an opposite expression pattern in those cultivars showing extreme resistance/susceptibility to Verticillium wilt has been discovered, establishing a solid group of candidates to take into account in future genetic improvement programs.
Project description:Proteins and peptides are minor components of vegetal oils. The presence of these compounds in virgin olive oil was first reported in 2001, but the nature of the olive oil proteome is still a puzzling question for food science researchers. In this project, we have compiled for a first time a comprehensive proteomic dataset of olive fruit and fungal proteins that are present at low but measurable concentrations in a vegetable oil from a crop of great agronomical relevance as olive (Olea europaea L.). Accurate mass nLC-MS data were collected in high definition direct data analysis (HD-DDA) mode using the ion mobility separation step. Protein identification was performed using the Mascot Server v2.2.07 software (Matrix Science) against an ad hoc database made of olive protein entries. Starting from this proteomic record, the impact of these proteins on olive oil stability and quality could be tested. Moreover, the effect of olive oil proteins on human health and their potential use as functional food components could be also evaluated. In addition, this dataset provides a resource for use in further functional comparisons across other vegetable oils, and also expands the proteomic resources to non-model species, thus also allowing further comparative inter-species studies.
2020-09-29 | PXD019894 | Pride
Project description:GBS of olive (Olea europaea L.)
Project description:The delineation of the olive pollen proteome and its allergogram can improve the clinical management of patients with this pollinosis. We here integrated the recently described wild olive genomic data in a comprehensive proteomic approach to get the annotated olive (Olea europaea) pollen proteome and complete its complex allergogram. Olive pollen proteins were identified by LC-MS/MS using predicted protein sequences from its genome. GO annotation, KEGG Pathway analysis and identification of allergen families were performed by bioinformatics. Recombinant DNA, protein expression and purification, and immunological analyses were used to characterize putative allergens. A total of 1,907 proteins were identified. 60% of the proteins were predicted to possess catalytic activity and be involved in metabolic processes. 203 proteins belonging to 47 allergen families were found, with 37 non-previously described in olive pollen. Of four potential allergens produced in Escherichia coli, a peptidyl-prolyl cis-trans isomerase -cyclophilin-, masked in the protein extract by the major allergen Ole e 1, was found as a new olive pollen allergen (Ole e 15). 63% of the Ole e 15-sensitized patients were children and showed strong IgE recognition of the allergen. Ole e 15 shared high sequence identity with other plant, animal and fungal cyclophilins and a high IgE cross-reactivity with pollen, plant food and animal extracts. Taken together, the combination of available genomic data with proteomics permitted the profiling of the olive pollen proteome, revealing the spectrum of allergen families and cyclophilin as a new relevant allergen implicated in cross-reactivity.
Project description:The delineation of the olive pollen proteome and its allergogram can improve the clinical management of patients with this pollinosis. We here integrated the recently described wild olive genomic data in a comprehensive proteomic approach to get the annotated olive (Olea europaea) pollen proteome and complete its complex allergogram. Olive pollen proteins were identified by LC-MS/MS using predicted protein sequences from its genome. GO annotation, KEGG Pathway analysis and identification of allergen families were performed by bioinformatics. Recombinant DNA, protein expression and purification, and immunological analyses were used to characterize putative allergens. A total of 1,907 proteins were identified. 60% of the proteins were predicted to possess catalytic activity and be involved in metabolic processes. 203 proteins belonging to 47 allergen families were found, with 37 non-previously described in olive pollen. Of four potential allergens produced in Escherichia coli, a peptidyl-prolyl cis-trans isomerase -cyclophilin-, masked in the protein extract by the major allergen Ole e 1, was found as a new olive pollen allergen (Ole e 15). 63% of the Ole e 15-sensitized patients were children and showed strong IgE recognition of the allergen. Ole e 15 shared high sequence identity with other plant, animal and fungal cyclophilins and a high IgE cross-reactivity with pollen, plant food and animal extracts. Taken together, the combination of available genomic data with proteomics permitted the profiling of the olive pollen proteome, revealing the spectrum of allergen families and cyclophilin as a new relevant allergen implicated in cross-reactivity.
Project description:The delineation of the olive pollen proteome and its allergogram can improve the clinical management of patients with this pollinosis. We here integrated the recently described wild olive genomic data in a comprehensive proteomic approach to get the annotated olive (Olea europaea) pollen proteome and complete its complex allergogram. Olive pollen proteins were identified by LC-MS/MS using predicted protein sequences from its genome. GO annotation, KEGG Pathway analysis and identification of allergen families were performed by bioinformatics. Recombinant DNA, protein expression and purification, and immunological analyses were used to characterize putative allergens. A total of 1,907 proteins were identified. 60% of the proteins were predicted to possess catalytic activity and be involved in metabolic processes. 203 proteins belonging to 47 allergen families were found, with 37 non-previously described in olive pollen. Of four potential allergens produced in Escherichia coli, a peptidyl-prolyl cis-trans isomerase -cyclophilin-, masked in the protein extract by the major allergen Ole e 1, was found as a new olive pollen allergen (Ole e 15). 63% of the Ole e 15-sensitized patients were children and showed strong IgE recognition of the allergen. Ole e 15 shared high sequence identity with other plant, animal and fungal cyclophilins and a high IgE cross-reactivity with pollen, plant food and animal extracts. Taken together, the combination of available genomic data with proteomics permitted the profiling of the olive pollen proteome, revealing the spectrum of allergen families and cyclophilin as a new relevant allergen implicated in cross-reactivity.
2019-06-17 | PXD012334 | Pride
Project description:Transcriptome of olive (Olea europaea L.) fruits