Project description:PAX2 is one of nine PAX genes that regulate tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell lineage specification, migration, and survival. In our previous study, we found that PAX2 is highly expressed in low-grade ovarian serous carcinoma, but its expression in clear cell, endometrioid, and mucinous cell ovarian carcinomas have not been studied. More importantly, the functional role of PAX2 in ovarian cancer is not known. Downregulation of PAX2 in PAX2-expressing ovarian cancer cells inhibits cell proliferation and migration. This growth inhibition is due to the upregulation of the tumor suppressor gene G0S2 and subsequent induction of apoptosis. The PAX2 pathway thus represents a potential therapeutic target for PAX2-expressing ovarian carcinomas. Knockdown PAX2 expression in these cell lines was achieved by lentiviral shRNAs targeting the PAX2 gene. PAX2 stable knockdown cells were characterized for cell proliferation, migration, apoptosis, and gene expression profiles.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Objective: Ovarian tumors of low-malignant potential (LMP) and low-grade serous ovarian carcinomas are thought to represent different stages on a tumorigenic continuum and to develop along pathways distinct from that of high-grade serous ovarian carcinoma. Past studies have utilized gene expression profiles to support this theory. The objective of the current study was to identify new genes whose expression profiles in LMP ovarian tumors and low-grade ovarian carcinomas differ from that in high-grade ovarian carcinomas. Methods: We used RNA from 3 normal human ovarian surface epithelia (HOSE) and from 10 low-grade and 10 high-grade serous ovarian carcinoma samples to perform gene expression profiling. Using real-time reverse-transcription polymerase chain reaction (RT-PCR), we evaluated changes in PAX2 mRNA expression in cDNA created from RNA extracted from an independent set of ovarian tissue samples (7 LMP tumors and 17 low-grade and 23 high-grade serous carcinomas). We also examined PAX2 expression using Western blot analysis of protein extracted from a set of ovarian LMP and low- and high-grade carcinoma tissue samples. Additionally, we used immunohistochemistry (IHC) to validate PAX2 overexpression in a third independent set of paraffin ovarian tissue sections from 17 LMP tumors and 16 low- and 257 high-grade carcinomas. Results: Gene profiling revealed higher expression of PAX2 in low-grade than in high-grade ovarian carcinomas. Real-time RT-PCR demonstrated a statistically significant difference in median PAX2 mRNA expression, expressed as fold change, among ovarian LMP tumor (1837.38), low-grade (183.12), and high-grade (3.72) carcinoma samples (p=0.015). Western blot analysis revealed strong PAX2 expression in ovarian LMP and low-grade carcinoma samples but no PAX2 protein expression in high-grade carcinomas. On IHC, more LMP tumor and low-grade carcinoma samples expressed moderate to high levels of PAX2 than did high-grade ovarian carcinoma samples. The numbers of samples with strong nuclear staining was significantly higher for ovarian LMP tumors (10 of 17, p<0.001) and low-grade serous carcinomas (10 of 16, p<0.001) than for high-grade carcinomas (27 of 257). Discussion: Our identification and validation of higher PAX2 expression in ovarian LMP tumors and low-grade serous carcinomas than in high-grade carcinomas supports the two-tiered hypothesis that the first two are on a continuum and are distinct from high-grade ovarian carcinomas. PAX2 may represent a potential biomarker and future therapeutic target for individualizing chemotherapy for ovarian LMP tumors and low-grade carcinomas in the future. Experiment Overall Design: We used RNA from 3 normal human ovarian surface epithelia (HOSE) and from 10 low-grade and 10 high-grade serous ovarian carcinoma samples to perform gene expression profiling. Using real-time reverse-transcription polymerase chain reaction (RT-PCR), we evaluated changes in PAX2 mRNA expression in cDNA created from RNA extracted from an independent set of ovarian tissue samples (7 LMP tumors and 17 low-grade and 23 high-grade serous carcinomas). We also examined PAX2 expression using Western blot analysis of protein extracted from a set of ovarian LMP and low- and high-grade carcinoma tissue samples. Additionally, we used immunohistochemistry (IHC) to validate PAX2 overexpression in a third independent set of paraffin ovarian tissue sections from 17 LMP tumors and 16 low- and 257 high-grade carcinomas.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Our lab established the M0505 cell line from the ovarian surface epithelium (OSE) of FVB/N mice in May 2005 in order to study OSE biology. This cell line was infected with PAX2 to study the biological consequences of PAX2 expression in normal mOSE cells We used microarrays to try to determine the downstream targets of PAX2 in mOSE (M0505) cells to gain information that may lead to a greater understanding of its oncongenic potential. Two biological replicates of M0505+WPI, M0505+PAX2 and M0505+PAX2+Cre cells were collected for RNA extraction and subesequent hybridization on the Affymetrix MoGene-1_0-st-v1 platform.
Project description:Our lab established the M0505 cell line from the ovarian surface epithelium (OSE) of FVB/N mice in May 2005 in order to study OSE biology. This cell line was infected with PAX2 to study the biological consequences of PAX2 expression in normal mOSE cells We used microarrays to try to determine the downstream targets of PAX2 in mOSE (M0505) cells to gain information that may lead to a greater understanding of its oncongenic potential.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.