Project description:Conidia are considered to be the primary cause of skin and nail infections by Trichophyton rubrum. A cDNA microarray containing 10112 ESTs was developed and used to estimate the relative gene expression levels and changes of gene expression during conidial germination in time-course experiments. Keywords: time course
Project description:Trichophyton rubrum is a pathogenic fungus infecting human skin, hairs and nails. These substrates are low in most nutrients required for fungal growth and consequently are colonized only by very few fungal species. Especially, concentration of trace elements is low and a limiting factor for fungal growth. T. rubrum is a highly specialist fungus and adapted to this environment. By in-vitro experiments, we analyzed the influence of trace-elements on mRNA expression. We measured gene expression by RNAseq of two T. rubrum strains, STRB008 and STRB012, in three different cultivation condition, each in 6 replications. Keratin medium, without sugar supply, was used as basic medium. In the second condition, we added trace-elements to the keratin medium. In the third condition, we added glucose. We point to the evolutionary adaption of the fungus to the human skin. T. rubrum has a sophisticated system for the digestion and utilization of human skin protein and a relative low demand for trace-elements.
Project description:We investigated the transcription profile of germinant conidia growth on protein substrates to widen the knowledge about relevant genes for pathogenecity, and also it was verified an encoding gene of adhesin like protein, which was modulated during the growth of T. rubrum on keratin.
Project description:A cDNA microarray was constructed from the expressed sequence tags (ESTs) of different developmental stages, and transcriptional profiles of the responses to 5-Flucytosine were determined. Keywords: Expression profiling by array The expression profiles of Trichophyton rubrum treated with 5-Flucytosine were compared to those of Trichophyton rubrum without drug. Each treatment has three replicates.
Project description:We investigated the transcription profile of germinant conidia growth on protein substrates to widen the knowledge about relevant genes for pathogenecity, and also it was verified an encoding gene of adhesin like protein, which was modulated during the growth of T. rubrum on keratin. About 2.6 x 106 conidia/ mL solution was prepared from T. rubrum growth on Sabouraud for 15 days. The solution was inoculated in Cove's medium with nitrate and glucose (control), Cove's medium with 0.25% of elastin, and Cove's medium with 0.5% of keratin. These conditions were incubated for 24h, 36h and 72h. Two independent experiments were performed for each condition.
Project description:A cDNA microarray was constructed from the expressed sequence tags (ESTs) of different developmental stages, and comparative genome hybridization based on microarray procedures were carried out. Dermatophyte species are classified into three genera: Epidermophyton, Microsporum, and Trichophyton. To determine the relationship between these three groups comparative genome hybridization were used in our experiment. Trichophyton rubrum genmic DNA was reference DNA and labelled by Cy3 while the other dermatophytes genomic DNA were test DNA and labelled by CY5. Test and reference DNA were co-hybridized with the T. rubrum cDNA microarray and the numbers of genes shared between each species and T. rubrum were determined. Keywords: Comparative Genomic Hybridization We used a Trichophyton rubrum cDNA microarray prepared in our lab through comparative genome hybridization of genomic DNA of 21 dermatophyte strains (belonging to 20 species) to elucidate the taxonomy and evolution profiles of 20 dermatophyte species. The numbers of genes shared between each species and T. rubrum were determined. Each strain DNA hybridized for 3 times. The slides were separated into three groups base on different datasets.
Project description:A cDNA microarray was constructed from the expressed sequence tags (ESTs) of different developmental stages, and comparative genome hybridization based on microarray procedures were carried out. Dermatophyte species are classified into three genera: Epidermophyton, Microsporum, and Trichophyton. To determine the relationship between these three groups comparative genome hybridization were used in our experiment. Trichophyton rubrum genmic DNA was reference DNA and labelled by Cy3 while the other dermatophytes genomic DNA were test DNA and labelled by CY5. Test and reference DNA were co-hybridized with the T. rubrum cDNA microarray and the numbers of genes shared between each species and T. rubrum were determined. Keywords: Comparative Genomic Hybridization