Project description:This study examines the transcriptomic response of biofilms of the PAH-degrading Sphingomonas sp. LH128 on solute stress when actively degrading and growing on the PAH compound. To address the effect of solute stress on bacterial physiology and transcriptomic response, NaCl was used as osmolyte. Both acute and chronic solute stress was invoked to assess differences in short-term and long-term responses.
Project description:We report the differential expression of a PAH degrading bacterium in different states of substrate induction. Separate substrate cultivation of the same batch of bacterial isolates; total RNA extraction, processing and sequencing; gene expression analysis using bioinformatics softwares and experimental validation using qRT-PCR.
Project description:This study examines the transcriptomic response of biofilms of the PAH-degrading Sphingomonas sp. LH128 on solute stress when actively degrading and growing on the PAH compound. To address the effect of solute stress on bacterial physiology and transcriptomic response, NaCl was used as osmolyte. Both acute and chronic solute stress was invoked to assess differences in short-term and long-term responses. Transcriptomic response of phenanthrene degrading Sphingomonas sp. LH128 biofilms as a response to short-term and long-term solute (NaCl) stress was studied using genome-wide gene expression analysis. For this purpose, the strain was grown in customized continuous glass flow chambers that contain solid phenanthrene as a sole carbon source and that allow easy recovery of biofilm cells for transcriptomic and physiological analysis. A NaCl stress of 450 mM was imposed on LH128 biofilms growing on phenanthrene crystals coated on glass slides either for 4 hours (acute stress) or for 3 days (chronic stress). RNA was extracted from the biofilm and cDNA was synthesized and labeled with Cy3. Transcriptomic response in the stressed biofilms of three replicates per conditions were analyzed and compared with non-stressed