Project description:Capelin (Mallotus villosus) is one of the important fish species in the arctic marine foodweb that could be vulnerable to contaminant exposure from offshore petroleum related activities. The study was conducted to map transcriptome responses in capelin liver slice culture exposed to benzo[a]pyrene (BaP). BaP is a polyaromatic hydrocarbon (PAH) which is among the most toxic compounds found in crude oil. Ex vivo liver slices culture was performed under 10 µM BaP exposure for 72 h and transcriptome analysis (RNA-seq) analysis was performed to characterize de novo transcriptome of the liver and identify genes responding to BaP exposure.
Project description:Members of the bacterial phylum Spirochaetes are primarily studied for their commensal and pathogenic roles in animal hosts. However, Spirochaetes are also frequently detected in anoxic hydrocarbon-contaminated environments but their ecological role in such ecosystems has so far remained unclear. Here we provide a functional trait to these frequently detected organisms with an example of a sulfate-reducing, naphthalene-degrading enrichment culture consisting of a sulfate-reducing deltaproteobacterium Desulfobacterium naphthalenivorans and a novel spirochete Rectinema cohabitans. Using a combination of genomic, proteomic, and physiological studies we show that R. cohabitans grows by fermentation of organic compounds derived from biomass from dead cells (necromass). It recycles the derived electrons in the form of H2 to the sulfate-reducing D. naphthalenivorans, thereby supporting naphthalene degradation and forming a simple microbial loop. We provide metagenomic evidence that equivalent associations between Spirochaetes and hydrocarbon-degrading microorganisms are of general importance in hydrocarbon- and organohalide-contaminated ecosystems. We propose that environmental Spirochaetes form a critical component of a microbial loop central to nutrient cycling in subsurface environments. This emphasizes the importance of necromass and H2-cycling in highly toxic contaminated subsurface habitats such as hydrocarbon-polluted aquifers.
Project description:Long rough dab (Hippoglossoides platessoides) is an important flatfish fish species in the north Atlantic arctic and sub-arctic marine foodweb that could be vulnerable to contaminant exposure from offshore petroleum related activities. The study was conducted to map transcriptome responses in long rough dab precision cut liver slice (PCLS) culture exposed to benzo[a]pyrene (BaP). BaP is a polyaromatic hydrocarbon (PAH) which is among the most toxic compounds found in crude oil. PCLS culture was performed under 10 µM BaP exposure for 72 h and transcriptome analysis (RNA-seq) analysis was performed to characterize de novo transcriptome of the liver and identify genes responding to BaP exposure.
Project description:The application of chemical dispersants during marine oil spills can affect the community composition and activity of native marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced hydrocarbon-biodegradation rates. In this respect, a major knowledge gap exists in understanding the mechanisms underlying these observed physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions that varied regarding the supplied carbon sources (pyruvate vs. n-hexadecane) and whether or not dispersant (Corexit EC9500A) was added, or that contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF). We characterized the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a proposed metabolism of Corexit components as carbon substrates for the strain. Our findings implicate Corexit in affecting hydrocarbon metabolism, chemotactic motility, biofilm formation, and inducing solvent tolerance mechanisms like efflux pumps in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.