Project description:Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. DAVID tool identified cytoskeleton-related genes by employing the Cellular Component of Gene Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1G93A mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique gene that appeared deregulated in more than one studied region or presymptomatic age. The expression of Kif1b (qPCR) elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1G93A mice. Furthermore, Kif1b was downregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold) and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS. Sciatic nerve from SOD1G93A and Non transgenic controls from 60 days were used in the experiments. 4 biological replicates were used. A reference sample, comprised by RNA from different neonatal organs (heart, liver, kidney) were used in the hybridations
Project description:Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. DAVID tool identified cytoskeleton-related genes by employing the Cellular Component of Gene Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1G93A mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique gene that appeared deregulated in more than one studied region or presymptomatic age. The expression of Kif1b (qPCR) elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1G93A mice. Furthermore, Kif1b was downregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold) and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.
Project description:Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1G93A Amyotrophic Lateral Sclerosis mouse model
Project description:Transcription profiling by high throughput sequencing of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model
Project description:The transgenic mice expressing the human mutated form (G93A) of the SOD1 gene represent a valuable model of Amyotrophic Lateral Sclerosis (ALS). SOD1 is one of the main causative genes of familial ALS which accounts for 10% of cases. These transgenic animals develop a motorneuronal pathology that recapitulates well the neuropathological features occuring in ALS patients, and the progression of the disease can be monitored by a series of motor tests. Gastrocnemius is the first and most affected muscle in the disease, while triceps is relatively spared. Gene expression data of degenerating motor neurons at different disease stages are already available, while gene expression data on the muscle tissue are missing. Our aim is to define the role of muscle in motor neuron degeneration in ALS. Keywords: Single stage analysis (presymptomatic stage, 7 week-old mice) We considered two sets of muscle at presymptomatic stage (7 weeks): gastrocnemius and triceps from 4 transgenic SOD1G93A and 4 non-transgenic mice (NTg).
Project description:Microarray analyses using a whole mouse genome platform were employed in the evaluation of gene expression pattern of sciatic nerves of transgenic SOD1(G93A) mice and their littermate controls at presymptomatic age of 60 days Sciatic nerve from SOD1G93A and Non transgenic controls from 60 days were used in the experiments. 4 biological replicates were used. A reference sample, comprised by RNA from different neonatal organs (heart, liver, kidney) were used in the hybridations
Project description:Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular disorder characterized by the selective degeneration of upper and lower motor neurons, progressive muscle wasting and paralysis. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we performed high-density oligonucleotide microarray analysis of gene expression in hind limb skeletal muscles of sod1(G86R) mice, one of the existing transgenic models of ALS. To monitor denervation-dependent gene expression, we determined the effects of short-term acute denervation on the muscle transcriptome after sciatic nerve axotomy.
Project description:Transcription profiling of astrocytes from the symptomatic and late-stage time points of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS)