Project description:Expression of DREAM in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that DREAM participates in the control of trigeminal pain perception through the regulation of prodynorphin and BDNF. Furthermore, genome-wide analysis of trigeminal neurons in daDREAM transgenic mice revealed that cathepsin L (CTSL) and the monoglyceride lipase (MGLL) are new DREAM downstream targets and have a role in the regulation of trigeminal nociception.
Project description:Little is known about the molecular mechanisms underlying mammalian touch transduction. To identify novel candidate transducers, we examined the molecular and cellular basis of touch in one of the most sensitive tactile organs in the animal kingdom, the star of the star-nosed mole. Our findings demonstrate that the trigeminal ganglia innervating the star are enriched in tactile-sensitive neurons, resulting in a higher proportion of light touch fibers and lower proportion of nociceptors compared to the dorsal root ganglia innervating the rest of the body. We exploit this difference using transcriptome analysis of the star-nosed mole sensory ganglia to identify novel candidate mammalian touch and pain transducers. The most enriched candidates are also expressed in mouse somatosesensory ganglia, suggesting they may mediate transduction in diverse species and are not unique to moles. These findings highlight the utility of examining diverse and specialized species to address fundamental questions in mammalian biology. Examination of the transcriptome of 3 trigeminal and 3 dorsal root ganglia
Project description:Purpose: In this study, we aimed to analyze lncRNA expression in the whole transcriptome of trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) in a chronic inflammatory TMJ pain mouse model. Chronic inflammatory TMJ pain was induced by intra-TMJ injection of complete Freund's adjuvant (CFA). The lncRNA expression patterns in the whole transcriptome of TG and Sp5C were profiled with RNA sequencing.
Project description:Chronic pain remains a significant medical challenge with complex underlying mechanisms, and an urgent need for new treatments. Our research built and utilized the iPain single-cell atlas to study chronic pain progression in dorsal root and trigeminal ganglia. We discovered that senescence of a small subset of pain-sensing neurons may be a key driver of chronic pain. This mechanism was observed in animal models after nerve injury and in human patients with chronic pain or diabetic neuropathy. Notably, treatment with senolytics, drugs that remove senescent cells, reversed pain symptoms in mice post-injury. These findings highlight the crucial role of cellular senescence in chronic pain development, demonstrate the therapeutic potential of senolytic treatments, and underscore the value of the iPain atlas for future pain research.
Project description:RNA-sequencing identifies the expression profile of miRNAs in the trigeminal ganglia of mice with or without trigeminal neuropathic pain
Project description:The expression profile of lncRNAs, circRNAs, and mRNAs in the trigeminal ganglia of mice with or without trigeminal neuropathic pain
Project description:The cerebral cortex plays a key role in the multi-dimensional human pain experience. However, the neural mechanisms mediating pain-related cortical activity remain largely unknown, particularly in primary somatosensory cortex (S1). We therefore developed a new animal model of trigeminal neuralgia, a prototypical neuropathic pain, which allowed us to evaluate pain-related cortical dynamics with unprecedented translational relevance. Our novel model (FLIT: Foramen Lacerum Impingement of Trigeminal-nerve) displayed robust clinically relevant trigeminal neuralgia-like behaviors, including asymmetric facial grimacing, dental pain-like behaviors, anxiety-like behavior, and sexual dysfunction, capturing many features of the human pain experience. Awake FLIT mice exhibited highly synchronized spontaneous population activity in S1, due to GABAergic interneuron hypoactivity. Remarkably, clinically effective treatments including carbamazepine and trigeminal nerve root decompression abrogated S1 synchronization and alleviated trigeminal neuralgia-like behaviors. These results reveal synchronized S1 activity as a new and important cortical substrate of neuropathic pain, which can be clinically targeted to provide effective therapy.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Trigeminal neuralgia (TN) is a type of neuropathic pain caused by injury to sensory nerves, manifesting as severe paroxysmal pain of the head and face. Trigeminal neuralgia brings a huge burden to patients, without long-term effective treatment. Changes in the expression of pain-related genes in the whole blood samples of patients play an important role in the pathogenesis, diagnosis, and evaluation of treatment effects of trigeminal neuralgia. To better understand the mechanism of trigeminal neuralgia, we collect the whole blood samples from the trigeminal neuralgia patients and the pain-free healthy comparisons. RNA-seq was conducted between the two groups to find the transcriptome changes in patients with trigeminal neuralgia.
Project description:The sensitization of trigeminal ganglion neurons contributes to primary headache disorders such as migraine, but the specific neuronal and non-neuronal trigeminal subtypes involved remain unclear. We thus developed a cell atlas in which human and mouse trigeminal ganglia are transcriptionally and epigenomically profiled at single-cell resolution. These data describe evolutionarily conserved and human-specific gene expression patterns within each trigeminal ganglion cell type, as well as the transcription factors and gene regulatory elements that contribute to cell-type-specific gene expression. We then leverage these data to identify trigeminal ganglion cell types that are implicated both by human genetic variation associated with migraine and two mouse models of headache. This trigeminal ganglion cell atlas improves our understanding of the cell types, genes, and epigenomic features involved in headache pathophysiology and establishes a rich resource of cell-type-specific molecular features to guide the development of more selective treatments for headache and facial pain.