Project description:Invasive lobular carcinoma (ILC) of the breast accounts for 5-15% of breast cancers and is characterized by loss of E-cadherin and believed to arise via a linear histological progression. Genomic studies have identified a clonal relationship between ILC and concurrent lobular carcinoma in situ (LCIS) lesions, suggesting that LCIS may be a precursor lesion. It has been shown that an LCIS diagnosis confers a 15-20% risk of progression to ILC, over a lifetime. Currently no molecular test or markers can identify LCIS lesions likely to progress to ILC. Since microRNA (miRNA) expression changes have been detected in a number of other cancer types, we explored whether their dysregulation might be detected during progression from LCIS to ILC. Using the Illumina miRNA profiling platform, designed for simultaneous analysis of 470 mature miRNAs, we analyzed the profiles of archived normal breast epithelium, LCIS lesions found alone, LCIS lesions concurrent with ILC, and the concurrent ILCs, as a model of linear histological progression toward ILC. We identified two sets of differentially expressed miRNAs, the first set highly expressed in normal epithelium, including hsa-miR-224, -139, -10b, -450, 140 and -365 and the second set upregulated during lobular neoplasia, including hsa-miR-375, -203, -425-5p, -183, -565 and -182. Using quantitative RT-PCR, we validated a trend of increased expression for hsa-mir-375, hsa-mir-182, and hsa-mir-183 correlating with ILC progression. As we detected increased expression of hsa-miR-375 in LCIS lesions synchronous with ILC, we sought to determine whether hsa-mir-375 might induce phenotypes reminiscent of lobular neoplasia by expressing it in the MCF10A 3D culture model of mammary acinar morphogenesis. Increased expression of hsa-miR-375 resulted in loss of cellular organization and acquisition of a hyperplastic phenotype. These data suggest that dysregulated miRNA expression contributes to lobular neoplastic progression.
Project description:Invasive lobular carcinoma (ILC) of the breast accounts for 5-15% of breast cancers and is characterized by loss of E-cadherin and believed to arise via a linear histological progression. Genomic studies have identified a clonal relationship between ILC and concurrent lobular carcinoma in situ (LCIS) lesions, suggesting that LCIS may be a precursor lesion. It has been shown that an LCIS diagnosis confers a 15-20% risk of progression to ILC, over a lifetime. Currently no molecular test or markers can identify LCIS lesions likely to progress to ILC. Since microRNA (miRNA) expression changes have been detected in a number of other cancer types, we explored whether their dysregulation might be detected during progression from LCIS to ILC. Using the Illumina miRNA profiling platform, designed for simultaneous analysis of 470 mature miRNAs, we analyzed the profiles of archived normal breast epithelium, LCIS lesions found alone, LCIS lesions concurrent with ILC, and the concurrent ILCs, as a model of linear histological progression toward ILC. We identified two sets of differentially expressed miRNAs, the first set highly expressed in normal epithelium, including hsa-miR-224, -139, -10b, -450, 140 and -365 and the second set upregulated during lobular neoplasia, including hsa-miR-375, -203, -425-5p, -183, -565 and -182. Using quantitative RT-PCR, we validated a trend of increased expression for hsa-mir-375, hsa-mir-182, and hsa-mir-183 correlating with ILC progression. As we detected increased expression of hsa-miR-375 in LCIS lesions synchronous with ILC, we sought to determine whether hsa-mir-375 might induce phenotypes reminiscent of lobular neoplasia by expressing it in the MCF10A 3D culture model of mammary acinar morphogenesis. Increased expression of hsa-miR-375 resulted in loss of cellular organization and acquisition of a hyperplastic phenotype. These data suggest that dysregulated miRNA expression contributes to lobular neoplastic progression. 6 specimens were analyzed in duplicate. One frozen normal lobular epithelium and the matched FFPE (1 month old) normal lobular epithelium. One lobular carcinoma in situ (LCIS) found alone, one LCIS synchronous with an invasive lobular carcinoma (ILC), the synchronous ILC (from a different archived block), and one ILC found alone without presence of any other breast cancer.
Project description:Cervical cancer results from the accumulation of (epi)genetic aberrations following persistent infection with high-risk human papillomavirus (HPV). In order to define genetic aberrations associated with cervical carcinogenesis, chromosomal profiles of high-grade cervical intraepithelial neoplasia (CIN) were generated. Common aberrations usually encompass large genomic regions and contain numerous genes, hampering identification of actual driver genes. Consequently, direct evidence of chromosomal alterations actively contributing to cervical carcinogenesis has been lacking so far. By analyzing 60 high-grade CIN with high resolution arrayCGH we identified focal chromosomal aberrations that each harbour only one or a few genes. In total 74 focal aberrations were identified encoding 305 genes. Analysis of genes located within these focal aberrations, using two independent expression microarray datasets, revealed concurrent altered expression in high-grade CIN and/or cervical carcinomas compared to normal cervical samples for 8 genes: ATP13A3, HES1, OPA1, HRASLS, EYA2, ZMYND8, APOBEC2 and NCR2. Gene silencing of EYA2, located within a focal gain at 20q13, significantly reduced viability and migratory capacity of HPV16-transformed keratinocytes. Interestingly, for hsa-miR-375, located within the most frequently identified focal loss at 2q35, a direct correlation between a (focal) loss and significantly reduced expression was found. Down-regulation of hsa-miR-375 expression during cervical carcinogenesis was confirmed in a second independent series of cervical tissues. Moreover, ectopic expression of hsa-miR-375 in 2 cervical carcinoma cell lines reduced cellular viability. In conclusion, our data provide a proof of concept that chromosomal aberrations are actively contributing to HPV-induced carcinogenesis and identify EYA2 and hsa-mir-375 as oncogene and tumor suppressor gene, respectively. DNA from microdissected tissues: 60 samples total. 11 high-grade CIN, <5yr preceding hrHPV infection, 43 high-grade CIN >5yr preceding hrHPV infection, 6 CIN3 adjacent to SCC
Project description:miR-375 is not expression in human macrophages, however there is an enhanced accumulation of miR-375 in macrophages upon coculture with breast cancer cells. The target landscape of this miR in macrophages is not known. Ago-RIP-Seq was aimed to identify miR-375 targets in human macrophages.
Project description:Comparison af adherent growing breast cancer cell lines versus mammospheres under serum-free conditions Background: In patients with breast cancer, subsets of long-lived cells tolerate chemotherapies. These chemoresistant cells can remain dormant at secondary sites, such as bone and lung, for years and decades. Cancer cells endowed with drug resistance are maintained in vivo in a quiescent slow-growing state that preserves them from anti-proliferative cancer drugs. The mechanism of conversion from dormancy to growth remains poorly understood. We aimed to identify microRNAs (miRNAs) as master regulators of cancer stem cells (CSCs) maintainance, because one of the characteristics of CSCs is their slow proliferation or dormancy. MiRNA targeting CSCs may be an effective therapy to improve the prognosis of breast cancer patients. Methods: We performed miRNA array analysis to identify differences miRNA expression profiles between adherent cells and mammospheres that contain higher number of breast cancer stem cells (BCSCs). In this approach, we focused on expression of hsa-miR-27a. Further, roles of hsa-miR-27a target genes in maintaining BCSC properties were analysed . Results: Here, we showed that hsa-miR-27a was downregulated in mammosphere cells. The formation of BCSCs was attenuated by transfection of hsa-miR-27a. We found that hsa-miR-27a targets F-box and WD-40 domain protein 7 (FBW7), a tumor suppressor gene, thereby inducing tumor dormancy. Additionally, we found that hsa-miR-27a targets genes involved in GSH synthesis, including xCT (encoded by SLC7A11), a heterodimeric protein of a transporter subunit of the xC(-) system, cystathionine gamma-lyase (CTH/CSE), and nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2), thereby increasing intracellular reactive oxygen species (ROS) levels. Upregulation of these genes by antisense (as)-miR-27a induced autophagy. Conclusions: Previous studies showed that expression of hsa-miR-27a is elevated in breast cancer. Here, we showed that expression of hsa-miR-27a was reduced in BCSC. CSCs in the dormant state are resistant to chemotherapy due to inhibition of ROS accumulation in these cells. These results demonstrate that hsa-miR-27a plays an essential role in maintaining the BCSCs phenotype via regulation of FBW7, ROS related genes and the Nrf2 pathway, as well as in the dormant-to-proliferative switch of breast cancer cells. Thus, hsa-miR-27a represents a novel strategy for various type of breast cancer.
Project description:mRNA breast cancer cell lines were profiled to study the function of hsa-mir-221 and hsa-mir-222. MCF7 cell lines were profiled after treatment with mir-221/222 mimics, and compared to profiles with transfection controls. Similarly, MDA-MB-231 cell lines were profiled after treatment with mir-221/222 inhibitors, and compared to profiles with transfection controls. Since ESR1 is a predicted target of mir-221/222 we also profiled MCF7 cell lines after disrupting ESR1 with an siRNA. Other breast cancer cell lines are provided because all cell lines were normalized together. Keywords: breast cancer, cell line, hsa-mir-221, hsa-mir-222, ESR1
Project description:Cervical cancer results from the accumulation of (epi)genetic aberrations following persistent infection with high-risk human papillomavirus (HPV). In order to define genetic aberrations associated with cervical carcinogenesis, chromosomal profiles of high-grade cervical intraepithelial neoplasia (CIN) were generated. Common aberrations usually encompass large genomic regions and contain numerous genes, hampering identification of actual driver genes. Consequently, direct evidence of chromosomal alterations actively contributing to cervical carcinogenesis has been lacking so far. By analyzing 60 high-grade CIN with high resolution arrayCGH we identified focal chromosomal aberrations that each harbour only one or a few genes. In total 74 focal aberrations were identified encoding 305 genes. Analysis of genes located within these focal aberrations, using two independent expression microarray datasets, revealed concurrent altered expression in high-grade CIN and/or cervical carcinomas compared to normal cervical samples for 8 genes: ATP13A3, HES1, OPA1, HRASLS, EYA2, ZMYND8, APOBEC2 and NCR2. Gene silencing of EYA2, located within a focal gain at 20q13, significantly reduced viability and migratory capacity of HPV16-transformed keratinocytes. Interestingly, for hsa-miR-375, located within the most frequently identified focal loss at 2q35, a direct correlation between a (focal) loss and significantly reduced expression was found. Down-regulation of hsa-miR-375 expression during cervical carcinogenesis was confirmed in a second independent series of cervical tissues. Moreover, ectopic expression of hsa-miR-375 in 2 cervical carcinoma cell lines reduced cellular viability. In conclusion, our data provide a proof of concept that chromosomal aberrations are actively contributing to HPV-induced carcinogenesis and identify EYA2 and hsa-mir-375 as oncogene and tumor suppressor gene, respectively.
Project description:In this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the aggressiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in aggressive cell lines when compared to normal and less aggressive cell lines. Transient overexpression of miR-200c, miR-205, and miR-375 in MDA-MB-231 cells led to the inhibition of cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that it plays a more important role in regulating the aggressiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. To our knowledge, this study is the first systematic screening of functional miRNA target genes in aggressive breast cancer cells. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer aggressiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.