Project description:Background: It is a challenge to identify those patients who, after undergoing potentially curative treatments for hepatocellular carcinoma, are at greatest risk of recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissues. Methods: We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. Results: The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (p = 0.04). Conclusions: We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlating with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma. Keywords: Hepatocellular carcinoma, Expression array, Illumina, Signatures, Outcome prediction Training cohort: 80 tumor and 82 non-tumor liver tissues surgically resected from patients with hepatocellular carcinoma (HCC); Validation cohort: 225 non-tumor liver tissues surgically resected from patients with HCC. Clinical data has been withheld from GEO due to privacy concerns.
Project description:Background: It is a challenge to identify those patients who, after undergoing potentially curative treatments for hepatocellular carcinoma, are at greatest risk of recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissues. Methods: We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. Results: The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (p = 0.04). Conclusions: We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlating with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma. Keywords: Hepatocellular carcinoma, Expression array, Illumina, Signatures, Outcome prediction Training cohort: 80 tumor and 82 non-tumor liver tissues surgically resected from patients with hepatocellular carcinoma (HCC); Validation cohort: 225 non-tumor liver tissues surgically resected from patients with HCC. Clinical data has been withheld from GEO due to privacy concerns.
Project description:Background: It is a challenge to identify those patients who, after undergoing potentially curative treatments for hepatocellular carcinoma, are at greatest risk of recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissues. Methods: We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. Results: The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (p = 0.04). Conclusions: We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlating with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma. Keywords: Hepatocellular carcinoma, Expression array, Illumina, Signatures, Outcome prediction Training cohort: 80 tumor and 82 non-tumor liver tissues surgically resected from patients with hepatocellular carcinoma (HCC); Validation cohort: 225 non-tumor liver tissues surgically resected from patients with HCC. Clinical data has been withheld from GEO due to privacy concerns.
Project description:Background: It is a challenge to identify those patients who, after undergoing potentially curative treatments for hepatocellular carcinoma, are at greatest risk of recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissues. Methods: We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. Results: The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (p = 0.04). Conclusions: We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlating with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma. This SuperSeries is composed of the following subset Series: GSE10140: Gene Expression in Fixed Tissues and Outcome in Hepatocellular Carcinoma (Training Set, Liver) GSE10141: Gene Expression in Fixed Tissues and Outcome in Hepatocellular Carcinoma (Training Set, HCC) GSE10142: Gene Expression in Fixed Tissues and Outcome in Hepatocellular Carcinoma (Validation Set) Keywords: Hepatocellular carcinoma, Expression array, Illumina, Signatures, Outcome prediction Training cohort: 80 tumor and 82 non-tumor liver tissues surgically resected from patients with hepatocellular carcinoma (HCC); Validation cohort: 225 non-tumor liver tissues surgically resected from patients with HCC. Clinical data has been withheld from GEO due to privacy concerns.
Project description:Epigenetic deregulation is a critical event in human malignancies. A number of DNA methylation markers are currently under evaluation as diagnostic and prognostic biomarkers for many cancers. However, its potential role in hepatocellular carcinoma (HCC) is under-explored. Aims: To develop a DNA methylation-based prognostic signature in surgically resected HCC
Project description:Epigenetic deregulation is a critical event in human malignancies. A number of DNA methylation markers are currently under evaluation as diagnostic and prognostic biomarkers for many cancers. However, its potential role in hepatocellular carcinoma (HCC) is under-explored. Aims: To develop a DNA methylation-based prognostic signature in surgically resected HCC Tumors from 224 HCC resected patients, 10 normal Liver individuals and 9 Cirrhotic patients were analyzed. Methylome profiling was done with Illumina HumanMethylation450 (485,000 CpG, 96% of known CpG islands). We selected probes in CpG islands located in promoters, hypermethylated (B value higher than 50%) in at least 5% of the tumors and hypomethylated (B value lower than 33%) in more than 90% of normal liver.
Project description:Study goal is to disclose features of gene expressio profile of non-cancerous liver-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas and tumor-infiltrating lymphocytes of type C hepatitis patients with hepatocellular carcinomas. Keywords: gene expression profile, non-cancerous liver-infiltrating lymphocytes, tumor-infiltrating lymphocytes, type C hepatitis, hepatocellular carcinoma Non-cancerous liver-infiltrating lymphocytes were obtained by laser capture microdissection from surgically resected liver tissues of 12 type C hepatitis patients with hepatocellular carcinoma. The mRNA was amplified and expression profile was comprehensively analyzed with reference RNA using oligo-DNA chip. Tumor-infiltrating lymphocytes were obtained by laser capture microdissection from surgically resected cancer tissues of 12 type C hepatitis patients with hepatocellular carcinoma. The mRNA was amplified and expression profile was comprehensively analyzed with reference RNA using oligo-DNA chip.
Project description:Non-alcoholic fatty liver disease (NAFLD) is a major global health problem with its high prevalence and risk of developing lethal complications, progressive liver fibrosis and hepatocellular carcinoma (HCC), the only rising cancer mortality in the U.S. Ever after curative surgical resection, HCC can recur at extremely high rate (70% within 5 years); therefore, prediction of recurrent HCC is expected to guide decision of neo/adjuvant therapies currently under active development. Herein, we derived an HCC-transcriptome-based signature to predict disseminative recurrence, which originates from disseminated HCC cells from surgically resected initial tumor, and validated it in an independent cohort.
Project description:Background/Aims: Recurrence-free survival (RFS) following curative resection of hepatocellular carcinoma (HCC) in subjects with hepatitis C virus (HCV) infection is highly variable. Traditional clinico-pathological endpoints are recognized as weak predictors of RFS. It has been suggested that gene expression profiling of HCC and nontumoral liver tissue may improve prediction of RFS, aid in understanding of the underlying liver disease, and guide individualized therapy. The goal of this study was to create a gene expression predictor of HCC recurrence in subjects with HCV. Methods: Frozen samples of the tumors and nontumoral liver were obtained from 47 subjects with HCV-associated HCC. Additional nontumoral liver samples were obtained from HCV-free subjects with metastatic liver tumors. Gene expression profiling data was used to determine the molecular signature of HCV-associated HCC and to develop a predictor of RFS. Results: The molecular profile of the HCV-associated HCC confirmed central roles for MYC and TGF-beta1 in liver tumor development. Gene expression in tumors was found to have poor predictive power with regards to RFS, but analysis of nontumoral tissues yielded a strong predictor for RFS in late-recurring (>1 year) subjects. Importantly, nontumoral tissue-derived gene expression predictor of RFS was highly significant in both univariable and multivariable Cox proportional hazard model analyses. Conclusions: Microarray analysis of the nontumoral tissues from subjects with HCV-associated HCC delivers novel molecular signatures of RFS, especially among the late-recurrence subjects. The gene expression signature of the predictor gives important insights into the pathobiology of HCC recurrence and used in design of the individualized therapy. 43 tumor (JT) and 44 non-tumor (JNT) liver tissues surgically resected from patients with HCV-associated hepatocellular carcinoma; 8 non-tumor liver tissues (control samples, JC) surgically resected from HCV- or HBV-free patients with metastatic liver tumor. Inter-batch normalization was carried out using Distance Weighted Discrimination procedure. The supplementary file 'GSE17856_Readme.txt' contains a description of the replicates used for normalization. The 'GSE17856_US14702406_2514850*' files are the raw data files for the replicates.