Project description:To examine if gene expression profiles of many Behçet’s disease (BD) patients are commonly abnormal compared to those of healthy volunteers, we performed a genome-wide complementary DNA microarray analysis using an Agilent Hu44K array; RNA samples were isolated from the PBMCs of 41 individual BD patients (32 females and 9 males) and 17 normal volunteers.
Project description:To examine if gene expression profiles of many Behçetâs disease (BD) patients are commonly abnormal compared to those of healthy volunteers, we performed a genome-wide complementary DNA microarray analysis using an Agilent Hu44K array; RNA samples were isolated from the PBMCs of 41 individual BD patients (32 females and 9 males) and 17 normal volunteers. A total of 41 two color arrays were performed and each individual array included a target sample and a control sample.
Project description:Behçet’s disease (BD) is a chronic vasculitis characterized by systemic immune aberrations. However, a comprehensive understanding of the immune disturbances in BD and how they contribute to BD pathogenesis is lacking. Here, we performed single-cell and bulk RNA sequencing to profile peripheral blood mononuclear cells (PBMCs) and isolated monocytes from BD patients and healthy controls. This dataset is the bulk RNA sequencing part (next generation sequencing-based genome-wide transcriptional profiling), which contains the transcriptional profilings of freshly isolated PBMCs from19 samples (10 healthy controls and 9 BD patients).
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Behçet’s disease (BD) is a chronic vasculitis characterized by systemic immune aberrations. Here, we performed single-cell sequencing to profile peripheral blood mononuclear cells (PBMCs) and isolated monocytes from BD patients and healthy donors. We observed prominent expansion and transcriptional changes in monocytes in PBMCs from BD patients. Deciphering the monocyte heterogeneity revealed the accumulation of C1q-high (C1qhi) monocytes in BD. Pseudotime inference indicated that BD monocytes markedly shifted their differentiation toward inflammation-accompanied and C1qhi monocyte-ended trajectory. Further experiments showed that C1qhi monocytes enhanced phagocytosis and proinflammatory cytokine secretion, and multi-platform analyses revealed the significant clinical relevance of this subtype. Mechanistically, C1qhi monocytes were induced by activated IFN-γ signaling in BD patients, and were decreased by tofacitinib treatment. Our study illustrates BD immune landscape and the unrecognized contribution of C1qhi monocytes to BD hyperinflammation, showing their potential as therapeutic targets and clinical assessment indexes.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.
Project description:Th1/Th17-type T-cell responses are upregulated in Behcet’s disease (BD). However, signaling pathways associated with this aberrant immune response are not clarified. Whole-genome microarray profiling was performed with human U133 (Plus 2.0) chips using mRNA of isolated CD14+ monocytes and CD4+ T-cells from PBMC in patients with BD (n=9) and healthy controls (HC) (n=9). Flow cytometric analysis of unstimulated (US) and stimulated (PHA) STAT3 and pSTAT3 expressions of PBMCs were also analysed (BD and HC, both n=26). JAK1 was observed to be upregulated in both CD14+ monocytes (1.94 fold) and CD4+ T-lymphocytes (1.40 fold) of BD patients. Using canonical pathway enrichment analysis, JAK/STAT signaling was identified as activated in both CD14+ monocytes (p=2.95E-06) and in CD4+ lymphocytes (p=8.13E-04) in BD. Interferon (p=1.02E-07) and IL-6 (p=8.91E-03) signaling pathways were also prominent in CD14+ monocytes. Basal unstimulated total STAT3 expression was significantly higher in BD (1.2 vs 3.45, p<0.05). The JAK1/STAT3 signaling pathway is activated in BD, possibly through the activation of Th1/Th17-type cytokines such as IL-2, IFNγ, IL-6, IL-17 and IL-23.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:Microarray analysis of peripheral blood mononuclear cells (PBMCs) from IgA nephropathy patients, membranous nephropathy patients and healthy controls.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.