Project description:A comparative gene map of the horse genome composed of 127 loci was assembled based on the new assignment of 68 equine type I loci and on data published previously. PCR primers based on consensus gene sequences conserved across mammalian species were used to amplify markers for assigning 68 equine type I loci to 27 horse synteny groups established previously with a horse-mouse somatic cell hybrid panel (SCHP, UC Davis). This increased the number of coding genes mapped to the horse genome by over 2-fold and allowed refinements of the comparative mapping data available for this species. In conjunction with 57 previous assignments of type I loci to the horse genome map, these data have allowed us to confirm the assignment of 24 equine synteny groups to their respective chromosomes, to provisionally assign nine synteny groups to chromosomes, and to further refine the genetic composition established with Zoo-FISH of two horse chromosomes. The equine type I markers developed in this study provide an important resource for the future development of the horse linkage and physical genome maps.
Project description:Although several tendon-selective genes exist, they are also expressed in other musculoskeletal tissues. As cell and tissue engineering is reliant on specific molecular markers to discriminate between cell types, tendon-specific genes need to be identified. In order to accomplish this, we have used RNA sequencing (RNA-seq) to compare gene expression between tendon, bone, cartilage and ligament from horses. We identified several tendon-selective gene markers, and established eyes absent homolog 2 (EYA2) and a G-protein regulated inducer of neurite outgrowth 3 (GPRIN3) as specific tendon markers using RT-qPCR. Equine tendon cells cultured as three-dimensional spheroids expressed significantly greater levels of EYA2 than GPRIN3, and stained positively for EYA2 using immunohistochemistry. EYA2 was also found in fibroblast-like cells within the tendon tissue matrix and in cells localized to the vascular endothelium. In summary, we have identified EYA2 and GPRIN3 as specific molecular markers of equine tendon as compared to bone, cartilage and ligament, and provide evidence for the use of EYA2 as an additional marker for tendon cells in vitro.
Project description:Humans have domesticated many kinds of animals in their history. Dogs and horses have particularly close relationships with humans as cooperative partners. However, fewer scientific studies have been conducted on cognition in horses compared to dogs. Studies have shown that horses cross-modally distinguish human facial expressions and recognize familiar people, which suggests that they also cross-modally distinguish human emotions. In the present study, we used the expectancy violation method to investigate whether horses cross-modally perceive human emotions. Horses were shown a picture of a human facial expression on a screen, and they then heard a human voice from the speaker before the screen. The emotional values of the visual and auditory stimuli were the same in the congruent condition and different in the incongruent condition. Horses looked at the speaker significantly longer in the incongruent condition than in the congruent condition when they heard their caretaker's voices but not when they heard the stranger voice. In addition, they responded significantly more quickly to the voice in the incongruent condition than in the congruent one. To the best of our knowledge, this is the first study to show that horses cross-modally recognized the emotional states of their caretakers and strangers.
Project description:In social animals, recognizing conspecifics and distinguishing them from other animal species is certainly important. We hypothesize, as demonstrated in other species of ungulates, that horses are able to discriminate between the faces of conspecifics and the faces of other domestic species (cattle, sheep, donkeys and pigs). Our hypothesis was tested by studying inter-and intra-specific visual discrimination abilities in horses through a two-way instrumental conditioning task (discrimination and reversal learning), using two-dimensional images of faces as discriminative stimuli and food as a positive reward. Our results indicate that 8 out of 10 horses were able to distinguish between two-dimensional images of the faces of horses and images showing the faces of other species. A similar performance was obtained in the reversal task. The horses' ability to learn by discrimination is therefore comparable to other ungulates. Horses also showed the ability to learn a reversal task. However, these results were obtained regardless of the images the tested horses were exposed to. We therefore conclude that horses can discriminate between two dimensional images of conspecifics and two dimensional images of different species, however in our study, they were not able to make further subcategories within each of the two categories. Despite the fact that two dimensional images of animals could be treated differently from two dimensional images of non-social stimuli, our results beg the question as to whether a two-dimensional image can replace the real animal in cognitive tests.
Project description:Equine Papillomavirus 2 (EcPV2) is responsible for squamous cell carcinomas (eSCCs) of external genitalia of both male and female horses. However, few studies report the EcPV2 prevalence among healthy horses. Currently, the lack of these data does not permit identifying at-risk populations and, thus, developing screening protocols aimed at the early detection of the infection, as for humans. The aim of our study was to estimate the genoprevalence of EcPV2 in clinically healthy horses in Italy and to evaluate their innate immune response. For this purpose, penile and vulvar swabs of 234 healthy horses were collected through sampling with sterile cytobrushes. Nucleic acids were isolated and EcPV2-L1 presence (DNA) and gene expression (RNA) were checked by RT-qPCR. Our results showed EcPV2-L1 DNA presence in 30.3% of the samples and L1 expression in 48% of the positive samples. No statistically significant differences were found in genoprevalence in relation to sex, age, and origin, while, concerning breeds, the Thoroughbred had the highest risk of infection. Concerning specifically the mares, 40.2% of them resulted in being positive for EcPV2; our findings show a major positivity in pluriparous (p = 0.0111) and mares subjected to natural reproduction (p = 0.0037). Moreover, samples expressing L1 showed an increased expression of IL1B (p = 0.0139) and IL12p40 (p = 0.0133) and a decreased expression of RANKL (p = 0.0229) and TGFB (p = 0.0177). This finding suggests the presence of an effective immune response, which could explain the low incidence of SCCs in positive horses, despite a high EcPV2 genoprevalence (30%).
Project description:Visceral leishmaniasis (VL) is a neglected tropical disease caused by the Leishmania infantum parasite. The protozoan is able to infect several domestic and wild mammals. Since the first report on Leishmania spp. infection in horses in South America, leishmaniasis in equids has been highlighted in Brazil. A molecular epidemiological survey was carried out to verify the occurrence of Leishmania spp. DNA in horses and donkeys, in leishmaniases endemic areas in Sao Paulo State, Brazil. To this end, blood samples were obtained from 107 horses and 36 donkeys and subjected to DNA extraction followed by PCR targeting the ITS-1 region. Among the horses and donkeys, 1.87% (2/107) and 8.33% (3/36) were positive by PCR, respectively. The DNA sequencing of the ITS-1 amplification products confirmed L. infantum DNA in these animals. Our results suggest that horses and donkeys from non-VL and VL endemic areas of São Paulo State may be infected by the parasite.
Project description:The perception of different size illusions is believed to be determined by size-scaling mechanisms that lead individuals to extrapolate inappropriate 3D information from 2D stimuli. The Muller-Lyer illusion represents one of the most investigated size illusions. Studies on non-human primates showed a human-like perception of this illusory pattern. To date, it is not clear whether non-primate mammals experience a similar illusory effect. Here, we investigated whether horses perceive the Muller-Lyer illusion by using their spontaneous preference for the larger portion of carrot. In control trials, we presented horses with two carrot sticks of different sizes, and in test trials, carrot sticks of identical size were shown to the subjects together with arrowheads made of plastic material and arranged in a way meant to elicit the Müller-Lyer illusion in human observers. In control trials, horses significantly discriminated between the smaller and larger carrot stick. When presented with the illusion, they showed a significant preference for the carrot that humans perceive as longer. Further control trials excluded the possibility that their choices were based on the total size of the carrot stick and the arrowheads together. The susceptibility of horses to this illusion indicates that the perceptual mechanisms underlying size estimation in perissodactyla might be similar to those of primates, notwithstanding the considerable evolutionary divergence in the visual systems of these two mammalian groups.
Project description:The ability to discriminate between emotion in vocal signals is highly adaptive in social species. It may also be adaptive for domestic species to distinguish such signals in humans. Here we present a playback study investigating whether horses spontaneously respond in a functionally relevant way towards positive and negative emotion in human nonverbal vocalisations. We presented horses with positively- and negatively-valenced human vocalisations (laughter and growling, respectively) in the absence of all other emotional cues. Horses were found to adopt a freeze posture for significantly longer immediately after hearing negative versus positive human vocalisations, suggesting that negative voices promote vigilance behaviours and may therefore be perceived as more threatening. In support of this interpretation, horses held their ears forwards for longer and performed fewer ear movements in response to negative voices, which further suggest increased vigilance. In addition, horses showed a right-ear/left-hemisphere bias when attending to positive compared with negative voices, suggesting that horses perceive laughter as more positive than growling. These findings raise interesting questions about the potential for universal discrimination of vocal affect and the role of lifetime learning versus other factors in interspecific communication.
Project description:Ridden horses have been reported to be fearful of cows. We tested whether cows could provoke behavioural and cardiac fear responses in horses, and whether these responses differ in magnitude to those shown to other potential dangers. Twenty horses were exposed to cow, a mobile object or no object. The time spent at different distances from the stimulus was measured. In a separate test, heart rate (HR), root mean square of successive differences between heartbeats (RMSSD) and the horses' perceived fear were assessed at various distances from the stimuli. The horses avoided the area nearest to all stimuli. During hand-leading, the cow elicited the highest HR and lowest RMSSD. Led horses' responses to the cow and box were rated as more fearful as the distance to the stimulus decreased. Mares had a higher HR than geldings across all tests. HR positively correlated with the fearfulness rating at the furthest distance from the cow and box, and RMSSD negatively correlated with this rating in cow and control conditions. Our results show that these horses' avoidance response to cows was similar or higher to that shown towards a novel moving object, demonstrating that potentially, both neophobia and heterospecific communication play a role in this reaction.
Project description:The use of environmental enrichment (EE) has grown in popularity over decades, particularly because EE is known to promote cognitive functions and well-being. Nonetheless, little is known about how EE may affect personality and gene expression. To address this question in a domestic animal, 10-month-old horses were maintained in a controlled environment or EE for 12 weeks. The control horses (n = 9) lived in individual stalls on wood shaving bedding. They were turned out to individual paddocks three times a week and were fed three times a day with pellets or hay. EE-treated horses (n = 10) were housed in large individual stalls on straw bedding 7 hours per day and spent the remainder of the time together at pasture. They were fed three times a day with flavored pellets, hay, or fruits and were exposed daily to various objects, odors, and music. The EE modified three dimensions of personality: fearfulness, reactivity to humans, and sensory sensitivity. Some of these changes persisted >3 months after treatment. These changes are suggestive of a more positive perception of the environment and a higher level of curiosity in EE-treated horses, explaining partly why these horses showed better learning performance in a Go/No-Go task. Reduced expression of stress indicators indicated that the EE also improved well-being. Finally, whole-blood transcriptomic analysis showed that in addition to an effect on the cortisol level, the EE induced the expression of genes involved in cell growth and proliferation, while the control treatment activated genes related to apoptosis. Changes in both behavior and gene expression may constitute a psychobiological signature of the effects of enrichment and result in improved well-being. This study illustrates how the environment interacts with genetic information in shaping the individual at both the behavioral and molecular levels.